File size: 4,493 Bytes
820ac3d
a5e055b
5904b1d
7e2d83a
820ac3d
7e2d83a
a5e055b
820ac3d
 
 
d45486e
820ac3d
 
 
a5e055b
820ac3d
a5e055b
820ac3d
 
 
 
5904b1d
 
 
820ac3d
 
5904b1d
 
 
820ac3d
 
 
5904b1d
 
820ac3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
7e2d83a
820ac3d
 
 
 
11cd804
820ac3d
 
 
 
7e2d83a
820ac3d
 
 
 
 
 
106d95c
820ac3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
f073c65
820ac3d
5904b1d
820ac3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer
import gradio as gr
from threading import Thread
from PIL import Image

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.float32 if device == "cpu" else torch.float16,
    device_map="auto" if device == "cuda" else None,
    low_cpu_mem_usage=True
)

if device == "cuda":
    text_model = text_model.half()  # Convert to half precision if on GPU

vision_model = AutoModelForCausalLM.from_pretrained(
    VISION_MODEL_ID, 
    trust_remote_code=True, 
    torch_dtype=torch.float32 if device == "cpu" else torch.float16,
    low_cpu_mem_usage=True
).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Helper functions
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
    streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

def process_vision_query(image, text_input):
    prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
    image = Image.fromarray(image).convert("RGB")
    inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generate_ids = vision_model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=vision_processor.tokenizer.eos_token_id
        )
    
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response

# Gradio interface
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        chatbot = gr.Chatbot(height=600)
        gr.ChatInterface(
            fn=stream_text_chat,
            chatbot=chatbot,
            additional_inputs=[
                gr.Textbox(value="You are a helpful assistant", label="System Prompt"),
                gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"),
                gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens"),
                gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p"),
                gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k"),
            ],
        )

    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        with gr.Row():
            with gr.Column():
                vision_input_img = gr.Image(label="Input Picture")
                vision_text_input = gr.Textbox(label="Question")
                vision_submit_btn = gr.Button(value="Submit")
            with gr.Column():
                vision_output_text = gr.Textbox(label="Output Text")
        
        vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])

if __name__ == "__main__":
    print(f"Running on device: {device}")
    demo.launch()