Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,319 Bytes
a5e055b 7e2d83a 0f965de a5e055b 7e2d83a ee1adb0 7e2d83a ee1adb0 a5e055b 7e2d83a a5e055b 7e2d83a 0f965de 7e2d83a 0f965de 7e2d83a 0f965de d45486e 7e2d83a 0f965de 7e2d83a a5e055b 7e2d83a 0f965de 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a 11cd804 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a 11cd804 62a592a 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a 62a592a 7e2d83a 62a592a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 62a592a 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b f073c65 a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b f073c65 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a a5e055b 7e2d83a f073c65 a5e055b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import torch
import librosa
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
from gtts import gTTS
import gradio as gr
import spaces
from PIL import Image
import subprocess
print("Using GPU for operations when available")
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Function to safely load pipeline within a GPU-decorated function
@spaces.GPU
def load_pipeline(model_name, **kwargs):
try:
device = 0 if torch.cuda.is_available() else "cpu"
return pipeline(model=model_name, device=device, **kwargs)
except Exception as e:
print(f"Error loading {model_name} pipeline: {e}")
return None
# Load Whisper model for speech recognition within a GPU-decorated function
@spaces.GPU
def load_whisper():
try:
device = 0 if torch.cuda.is_available() else "cpu"
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
return processor, model
except Exception as e:
print(f"Error loading Whisper model: {e}")
return None, None
# Load sarvam-2b for text generation within a GPU-decorated function
@spaces.GPU
def load_sarvam():
return load_pipeline('sarvamai/sarvam-2b-v0.5')
# Load vision model
@spaces.GPU
def load_vision_model():
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2").cuda().eval()
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
return model, processor
# Process audio input within a GPU-decorated function
@spaces.GPU
def process_audio_input(audio, whisper_processor, whisper_model):
if whisper_processor is None or whisper_model is None:
return "Error: Speech recognition model is not available. Please type your message instead."
try:
audio, sr = librosa.load(audio, sr=16000)
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}. Please type your message instead."
# Generate response within a GPU-decorated function
@spaces.GPU
def text_to_speech(text, lang='hi'):
try:
# Use a better TTS engine for Indic languages
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
else:
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error in text-to-speech: {str(e)}")
return None
# Detect language (placeholder function, replace with actual implementation)
def detect_language(text):
# Implement language detection logic here
return 'en' # Default to English for now
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
if sarvam_pipe is None:
return "Error: Text generation model is not available."
try:
# Generate response using the sarvam-2b model
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
return response
except Exception as e:
return f"Error generating response: {str(e)}"
@spaces.GPU
def process_image(image, text_input, vision_model, vision_processor):
try:
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
image = Image.fromarray(image).convert("RGB")
inputs = vision_processor(prompt, image, return_tensors="pt").to("cuda:0")
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, eos_token_id=vision_processor.tokenizer.eos_token_id)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return response
except Exception as e:
return f"Error processing image: {str(e)}"
@spaces.GPU
def multimodal_assistant(input_type, audio_input, text_input, image_input):
try:
# Load models within the GPU-decorated function
whisper_processor, whisper_model = load_whisper()
sarvam_pipe = load_sarvam()
vision_model, vision_processor = load_vision_model()
if input_type == "audio" and audio_input is not None:
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
elif input_type == "text" and text_input:
transcription = text_input
elif input_type == "image" and image_input is not None:
return process_image(image_input, text_input, vision_model, vision_processor), None
else:
return "Please provide either audio, text, or image input.", None
response = generate_response(transcription, sarvam_pipe)
lang = detect_language(response)
audio_response = text_to_speech(response, lang)
return response, audio_response
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return error_message, None
# Custom CSS (you can keep your existing custom CSS here)
custom_css = """
body {
background-color: #0b0f19;
color: #e2e8f0;
font-family: 'Arial', sans-serif;
}
#custom-header {
text-align: center;
padding: 20px 0;
background-color: #1a202c;
margin-bottom: 20px;
border-radius: 10px;
}
#custom-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
#custom-header h1 .blue {
color: #60a5fa;
}
#custom-header h1 .pink {
color: #f472b6;
}
#custom-header h2 {
font-size: 1.5rem;
color: #94a3b8;
}
.suggestions {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 1rem;
margin: 20px 0;
}
.suggestion {
background-color: #1e293b;
border-radius: 0.5rem;
padding: 1rem;
display: flex;
align-items: center;
transition: transform 0.3s ease;
width: 200px;
}
.suggestion:hover {
transform: translateY(-5px);
}
.suggestion-icon {
font-size: 1.5rem;
margin-right: 1rem;
background-color: #2d3748;
padding: 0.5rem;
border-radius: 50%;
}
.gradio-container {
max-width: 100% !important;
}
#component-0, #component-1, #component-2 {
max-width: 100% !important;
}
footer {
text-align: center;
margin-top: 2rem;
color: #64748b;
}
"""
# Custom HTML for the header (you can keep your existing custom header here)
custom_header = """
<div id="custom-header">
<h1>
<span class="blue">Multimodal</span>
<span class="pink">Indic Assistant</span>
</h1>
<h2>How can I help you today?</h2>
</div>
"""
# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
<div class="suggestion">
<span class="suggestion-icon">π€</span>
<p>Speak in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">β¨οΈ</span>
<p>Type in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">π·</span>
<p>Upload an image for analysis</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">π€</span>
<p>Get AI-generated responses</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">π</span>
<p>Listen to audio responses</p>
</div>
</div>
"""
# Create Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
body_background_fill="#0b0f19",
body_text_color="#e2e8f0",
button_primary_background_fill="#3b82f6",
button_primary_background_fill_hover="#2563eb",
button_primary_text_color="white",
block_title_text_color="#94a3b8",
block_label_text_color="#94a3b8",
)) as iface:
gr.HTML(custom_header)
gr.HTML(custom_suggestions)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Multimodal Indic Assistant")
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
text_input = gr.Textbox(label="Type your message or image question")
image_input = gr.Image(label="Upload an image (if image input selected)")
submit_btn = gr.Button("Submit")
output_response = gr.Textbox(label="Generated Response")
output_audio = gr.Audio(label="Audio Response")
submit_btn.click(
fn=multimodal_assistant,
inputs=[input_type, audio_input, text_input, image_input],
outputs=[output_response, output_audio]
)
gr.HTML("<footer>Powered by Multimodal Indic Language AI</footer>")
# Launch the app
iface.launch() |