File size: 7,509 Bytes
7d56215
2c73bfa
 
 
 
 
 
 
 
 
 
 
 
7d56215
2c73bfa
 
7f10a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c73bfa
 
 
 
 
 
 
 
 
394b995
2c73bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d56215
 
2c73bfa
 
 
 
 
 
7d56215
2c73bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
f91d70b
 
2c73bfa
f91d70b
 
 
 
 
2c73bfa
 
7d56215
 
f91d70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d56215
 
2c73bfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91d70b
2c73bfa
f91d70b
7d56215
 
2c73bfa
 
 
 
 
 
7d56215
2c73bfa
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import time
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
import os
import pickle
from datetime import datetime
from backend.generate_metadata import extract_metadata, ingest


css = '''

<style>

.chat-message {

    padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex

}

.chat-message.user {

    background-color: #2b313e

}

.chat-message.bot {

    background-color: #475063

}

.chat-message .avatar {

  width: 20%;

}

.chat-message .avatar img {

  max-width: 78px;

  max-height: 78px;

  border-radius: 50%;

  object-fit: cover;

}

.chat-message .message {

  width: 80%;

  padding: 0 1.5rem;

  color: #fff;

}

'''
bot_template = '''

<div class="chat-message bot">

    <div class="avatar">

        <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">

    </div>

    <div class="message">{{MSG}}</div>

</div>

'''
user_template = '''

<div class="chat-message user">

    <div class="avatar">

        <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">

    </div>    

    <div class="message">{{MSG}}</div>

</div>

'''


def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text



def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    embeddings = OpenAIEmbeddings()
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    llm = ChatOpenAI()
    # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        # Display user message
        if i % 2 == 0:
            st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            print(message)
            # Display AI response
            st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)

            # THIS DOESNT WORK, SOMEONE PLS FIX
            # Display source document information if available in the message
            if hasattr(message, 'source') and message.source:
                st.write(f"Source Document: {message.source}", unsafe_allow_html=True)


def safe_vec_store():
    # USE VECTARA INSTEAD
    os.makedirs('vectorstore', exist_ok=True)
    filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
    file_path = os.path.join('vectorstore', filename)
    vector_store = st.session_state.vectorstore

    # Serialize and save the entire FAISS object using pickle
    with open(file_path, 'wb') as f:
        pickle.dump(vector_store, f)


def main():
    load_dotenv()
    st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
    st.write(css, unsafe_allow_html=True)
    if not "classify" in st.session_state:
        st.session_state.classify = False
    st.subheader("Your documents")
    if st.session_state.classify:
        pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
    else:
        pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        filenames = [file.name for file in pdf_docs if file is not None]
    if st.button("Process"):
        with st.spinner("Processing"):
            if st.session_state.classify:
                # THE CLASSIFICATION APP
                st.write("Classifying")
                plain_text_doc = ingest(pdf_doc.name)
                classification_result = extract_metadata(plain_text_doc)
                st.write(classification_result)
            else:
                # NORMAL RAG
                loaded_vec_store = None
                for filename in filenames:
                    if ".pkl" in filename:
                        file_path = os.path.join('vectorstore', filename)
                        with open(file_path, 'rb') as f:
                            loaded_vec_store = pickle.load(f)
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                vec = get_vectorstore(text_chunks)
                if loaded_vec_store:
                    vec.merge_from(loaded_vec_store)
                    st.warning("loaded vectorstore")
                if "vectorstore" in st.session_state:
                    vec.merge_from(st.session_state.vectorstore)
                    st.warning("merged to existing")
                st.session_state.vectorstore = vec
                st.session_state.conversation = get_conversation_chain(vec)
        st.success("data loaded")


    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Doc Verify RAG :hospital:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)
    with st.sidebar:

        st.subheader("Classification Instrucitons")
        classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True)
        filenames = [file.name for file in classifier_docs if file is not None]

        if st.button("Process Classification"):
            st.session_state.classify = True
            with st.spinner("Processing"):
                st.warning("set classify")
                time.sleep(3)


        # Save and Load Embeddings
        if st.button("Save Embeddings"):
            if "vectorstore" in st.session_state:
                safe_vec_store()
                # st.session_state.vectorstore.save_local("faiss_index")
                st.sidebar.success("saved")
            else:
                st.sidebar.warning("No embeddings to save. Please process documents first.")

        if st.button("Load Embeddings"):
            st.warning("this function is not in use, just upload the vectorstore")


if __name__ == '__main__':
    main()