Spaces:
Build error
Build error
File size: 7,116 Bytes
113dc2c 0dec378 27e4a6a d4fba6d 4816388 2fc432b 4816388 d95dbe9 32fdddd 219d097 471c590 52a0784 757da8f 27e4a6a 4816388 27e4a6a d95dbe9 4816388 d95dbe9 c79e0ac f0f180b c79e0ac f0f180b 1a52ee5 68ef0f8 f0f180b c79e0ac f0f180b 481dde5 d95dbe9 f0f180b c79e0ac 4816388 c79e0ac 4816388 f0f180b 4816388 f0f180b 27e4a6a f0f180b 4816388 f0f180b c79e0ac f0f180b 27e4a6a 4816388 f0f180b 4816388 f0f180b 4816388 5d264e2 f0f180b 4816388 f0f180b ac00586 f0f180b 757da8f 27e4a6a 4816388 0d49f14 4816388 9300241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
def enable_lora(lora_add, basemodel):
return lora_add if lora_add else basemodel
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
image = await client.text_to_image(
prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
num_inference_steps=steps, model=model
)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path), prompt=prompt, negative_prompt="",
seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6,
controlnet_decay=1, condition_scale=6, tile_width=112,
tile_height=144, denoise_strength=0.35, num_inference_steps=18,
solver="DDIM", api_name="/process"
)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception as e:
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
improved_prompt = await improve_prompt(prompt)
combined_prompt = f"{prompt} {improved_prompt}"
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
progress_bar = st.progress(0)
progress_bar.progress(10)
image, seed = await generate_image(combined_prompt, model, width, height, scales, steps, seed)
progress_bar.progress(50)
if isinstance(image, str) and image.startswith("Error"):
progress_bar.empty()
return [image, None, combined_prompt]
image_path = DATA_PATH / f"image_{seed}.jpg"
image.save(image_path, format="JPEG")
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
with open(prompt_file_path, "w") as prompt_file:
prompt_file.write(combined_prompt)
if process_upscale:
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
if upscale_image_path:
upscale_image = Image.open(upscale_image_path)
upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
progress_bar.progress(100)
image_path.unlink()
return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)]
else:
progress_bar.empty()
return [str(image_path), str(prompt_file_path)]
else:
progress_bar.progress(100)
return [str(image_path), str(prompt_file_path)]
async def improve_prompt(prompt):
try:
instruction = ("With this idea, describe in English a detailed txt2img prompt in a single paragraph of up to 200 characters maximum, developing atmosphere, characters, lighting, and cameras.")
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
return improved_text
except Exception as e:
return f"Error mejorando el prompt: {e}"
def get_storage():
files = list(DATA_PATH.glob("*.jpg"))
usage = sum(file.stat().st_size for file in files)
return files, f"Uso total: {usage/(1024.0 ** 3):.3f}GB"
def get_prompts():
prompt_files = list(DATA_PATH.glob("*.txt"))
return {file.stem.replace("prompt_", ""): file for file in prompt_files}
def run_gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora))
st.set_page_config(layout="wide")
st.title("Generador de Imágenes FLUX")
prompt = st.sidebar.text_input("Descripción de la imagen")
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"])
lora_model = st.sidebar.selectbox("LORA Realismo", ["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
process_lora = st.sidebar.checkbox("Procesar LORA")
process_upscale = st.sidebar.checkbox("Procesar Escalador")
if format_option == "9:16":
width = st.sidebar.slider("Ancho", 512, 720, 720, step=8)
height = st.sidebar.slider("Alto", 912, 1280, 1280, step=8)
else:
width = st.sidebar.slider("Ancho", 512, 1280, 1280, step=8)
height = st.sidebar.slider("Alto", 512, 720, 720, step=8)
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
scales = st.sidebar.slider("Escalado", 1, 20, 10)
steps = st.sidebar.slider("Pasos", 1, 100, 20)
seed = st.sidebar.number_input("Semilla", value=-1)
if st.sidebar.button("Mejorar prompt"):
improved_prompt = asyncio.run(improve_prompt(prompt))
st.session_state.improved_prompt = improved_prompt
st.write(f"{improved_prompt}")
if st.sidebar.button("Generar Imagen"):
with st.spinner("Generando imagen..."):
image_paths, prompt_file = run_gen(st.session_state.get('improved_prompt', prompt), basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora)
if image_paths and isinstance(image_paths[0], str) and Path(image_paths[0]).exists():
st.image(image_paths[0], caption="Imagen Generada")
prompt_text = Path(prompt_file).read_text() if prompt_file else "No disponible"
st.write(f"Prompt utilizado: {prompt_text}")
files, usage = get_storage()
st.text(usage)
cols = st.columns(6)
prompts = get_prompts()
for idx, file in enumerate(files):
with cols[idx % 6]:
image = Image.open(file)
prompt_file = prompts.get(file.stem.replace("image_", ""), None)
prompt_text = Path(prompt_file).read_text() if prompt_file else "No disponible"
st.image(image, caption=f"Imagen {idx+1}")
if st.button(f"Eliminar Imagen {idx+1}", key=f"delete_{idx}"):
file.unlink()
st.experimental_rerun() |