Spaces:
Running
Running
File size: 5,122 Bytes
0cfb4a5 d4fba6d 0dec378 757da8f a484b84 d4fba6d 2fc432b d95dbe9 32fdddd 219d097 471c590 757da8f 52a0784 757da8f 481dde5 d95dbe9 2fc432b 32fdddd 757da8f 32fdddd 52a0784 1a52ee5 68ef0f8 481dde5 68ef0f8 481dde5 d95dbe9 32fdddd 2f35681 52a0784 32fdddd 52a0784 32fdddd e3be785 d95dbe9 e3be785 32fdddd 2fc432b 757da8f 2713519 d8f32ab 2713519 757da8f e3be785 32fdddd e3be785 32fdddd e3be785 3b4ee8c 32fdddd 3b4ee8c 32fdddd d8f32ab 757da8f d8f32ab 32fdddd d95dbe9 68ef0f8 2713519 68ef0f8 d8f32ab 68ef0f8 757da8f 450c3d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, InferenceClient
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def enable_lora(lora_add, basemodel):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = prompt + "," + lora_word
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
except Exception as e:
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
return [f"Error generando imagen con el modelo {model}", None]
image_path = "temp_image.jpg"
image.save(image_path, format="JPEG")
if process_upscale:
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None:
upscale_image = Image.open(upscale_image_path)
upscale_image.save("upscale_image.jpg", format="JPEG")
return [image_path, "upscale_image.jpg"]
else:
return [image_path, image_path]
else:
return [image_path, image_path]
def improve_prompt(prompt):
try:
instruction = "Mejora mi prompt para texto a imagen en ingl茅s con estilo, cinematograf铆a, c谩maras, atm贸sfera e iluminaci贸n para la mejor calidad, de m谩ximo 200 palabras."
formatted_prompt = f"{instruction}: {prompt}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
improved_text = response.strip()
return improved_text
except Exception as e:
return f"Error mejorando el prompt: {e}"
css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=3):
output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=2):
prompt = gr.Textbox(label="Descripci贸n de im谩gen")
basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
process_lora = gr.Checkbox(label="Procesar LORA")
process_upscale = gr.Checkbox(label="Procesar Escalador")
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)
improve_btn = gr.Button("Mejora mi prompt")
improve_btn.click(fn=improve_prompt, inputs=[prompt], outputs=improved_prompt)
with gr.Accordion(label="Opciones Avanzadas", open=False):
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
seed = gr.Number(label="Semilla", value=-1)
btn = gr.Button("Generar")
btn.click(fn=gen, inputs=[improved_prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res)
demo.launch() |