File size: 7,366 Bytes
0cfb4a5
d4fba6d
0dec378
 
757da8f
d4fba6d
2fc432b
 
d95dbe9
32fdddd
219d097
471c590
757da8f
52a0784
757da8f
481dde5
d95dbe9
 
 
2fc432b
32fdddd
 
 
 
757da8f
32fdddd
 
 
52a0784
1a52ee5
68ef0f8
481dde5
68ef0f8
 
 
481dde5
 
 
d95dbe9
a521e90
 
 
 
 
5d264e2
a521e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95dbe9
 
a521e90
 
 
 
 
2fc432b
5d264e2
757da8f
a66d7b5
a521e90
a66d7b5
ffe0681
a521e90
2713519
757da8f
 
 
e3be785
32fdddd
e3be785
 
58314c4
e3be785
3b4ee8c
32fdddd
3b4ee8c
32fdddd
 
 
 
5d264e2
67e8080
5d264e2
 
 
 
 
58314c4
 
 
 
 
 
 
a521e90
 
d8f32ab
32fdddd
d95dbe9
 
a521e90
68ef0f8
2713519
68ef0f8
a521e90
 
d8f32ab
58314c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b8bc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, InferenceClient
from PIL import Image
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = prompt + "," + lora_word
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    try:
        model = enable_lora(lora_model, basemodel) if process_lora else basemodel
        
        improved_prompt = await improve_prompt(prompt)
        combined_prompt = f"{prompt} {improved_prompt}"

        image, seed = await generate_image(combined_prompt, model, "", width, height, scales, steps, seed)
        
        if isinstance(image, str) and image.startswith("Error"):
            return [image, None]
        
        image_path = "temp_image.jpg"
        image.save(image_path, format="JPEG")
        
        if process_upscale:
            upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
            if upscale_image_path is not None:
                upscale_image = Image.open(upscale_image_path)
                upscale_image.save("upscale_image.jpg", format="JPEG")
                return [image_path, "upscale_image.jpg"]
            else:
                return [image_path, image_path]
        else:
            return [image_path, image_path]
    except Exception as e:
        return [f"Error: {e}", None]

def error_handler(err):
    return f"Error: {err}"

async def improve_prompt(prompt):
    try:
        instruction = "improve this idea and describe in English a detailed img2vid prompt in a single paragraph of up to 200 characters, developing atmosphere, characters, lighting, and cameras."
        formatted_prompt = f"{prompt}: {instruction}"
        response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
        improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
        
        return improved_text
    except Exception as e:
        return f"Error mejorando el prompt: {e}"

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripción de imágen")
                basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                
                with gr.Row():
                    process_lora = gr.Checkbox(label="Procesar LORA")
                    process_upscale = gr.Checkbox(label="Procesar Escalador")

                improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)
                improve_btn = gr.Button("Mejora mi prompt")

                def improve_prompt_wrapper(prompt):
                    improved_text = improve_prompt(prompt)
                    return prompt, improved_text

                improve_btn.click(fn=improve_prompt_wrapper, inputs=[prompt], outputs=[prompt, improved_prompt])
                
                reset_btn = gr.Button("Reset")
                reset_btn.click(fn=lambda: [prompt.update(""), improved_prompt.update("")], inputs=None, outputs=[prompt, improved_prompt])
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
                    scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
                    seed = gr.Number(label="Semilla", value=-1)
                    reset_advanced = gr.Button("Reset")
                    reset_advanced.click(fn=lambda: [width.update(1280), height.update(768), scales.update(10), steps.update(20), seed.update(-1)], inputs=None, outputs=[width, height, scales, steps, seed])
    
                generating = gr.StatusTracker(label="Generando", status=False)
                btn = gr.Button("Generar", variant="primary", status_tracker=generating)
                btn.click(
                    fn=gen,
                    inputs=[
                        prompt,
                        basemodel_choice,
                        width,
                        height,
                        scales,
                        steps,
                        seed,
                        upscale_factor,
                        process_upscale,
                        lora_model_choice,
                        process_lora,
                    ],
                    outputs=[output_res],
                    error_handler=error_handler,
                )
                
                def check_prompt_change(prompt, previous_prompt):
                    if prompt != previous_prompt:
                        generating.update(status=True)
                    return previous_prompt
                
                previous_prompt = gr.State("")
                btn.click(
                    fn=check_prompt_change,
                    inputs=[prompt, previous_prompt],
                    outputs=[previous_prompt],
                    before_fn=True,
                )
    
    demo.launch()