File size: 5,274 Bytes
0cfb4a5
d4fba6d
0dec378
 
757da8f
a484b84
d4fba6d
2fc432b
 
d95dbe9
32fdddd
219d097
471c590
757da8f
52a0784
757da8f
481dde5
d95dbe9
 
 
2fc432b
32fdddd
 
 
 
757da8f
32fdddd
 
 
52a0784
1a52ee5
68ef0f8
481dde5
68ef0f8
 
 
481dde5
 
 
d95dbe9
32fdddd
2f35681
52a0784
32fdddd
52a0784
32fdddd
 
 
e3be785
 
d95dbe9
 
 
 
 
 
 
e3be785
32fdddd
2fc432b
757da8f
 
 
 
 
d8f32ab
 
 
 
56eb604
757da8f
 
 
e3be785
32fdddd
e3be785
 
32fdddd
e3be785
3b4ee8c
32fdddd
3b4ee8c
32fdddd
 
 
 
 
 
 
d8f32ab
 
 
 
757da8f
d8f32ab
32fdddd
d95dbe9
 
68ef0f8
d8f32ab
68ef0f8
d8f32ab
68ef0f8
757da8f
450c3d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient, InferenceClient
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = prompt + "," + lora_word
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        return f"Error al generar imagen: {e}", None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    
    if image is None:
        return [f"Error generando imagen con el modelo {model}", None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image_path is not None:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save("upscale_image.jpg", format="JPEG")
            return [image_path, "upscale_image.jpg"]
        else:
            return [image_path, image_path]
    else:
        return [image_path, image_path]

def improve_prompt(prompt):
    try:
        instruction = "Mejora mi prompt para texto a imagen en inglés con estilo, cinematografía, cámaras, atmósfera e iluminación para la mejor calidad, de máximo 200 palabras."
        formatted_prompt = f"{instruction}: {prompt}"
        response = llm_client.text_generation(formatted_prompt, max_new_tokens=200)
        
        # Aquí asumimos que la respuesta es un string completo, no una lista de objetos.
        improved_text = response  # Se espera que 'response' sea una cadena de texto.

        return improved_text.strip()
    except Exception as e:
        return f"Error mejorando el prompt: {e}"

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripción de imágen")
                basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="Procesar LORA")
                process_upscale = gr.Checkbox(label="Procesar Escalador")
                upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)

                improved_prompt = gr.Textbox(label="Prompt Mejorado", interactive=False)

                improve_btn = gr.Button("Mejora mi prompt")
                improve_btn.click(fn=improve_prompt, inputs=[prompt], outputs=improved_prompt)
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum 100, step=1, value=20)
                    seed = gr.Number(label="Semilla", value=-1)
    
                btn = gr.Button("Generar")
                btn.click(fn=gen, inputs=[improved_prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res)
    demo.launch()