|
import numpy |
|
import torch |
|
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel |
|
|
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer, logging |
|
import os |
|
|
|
from hue_loss import hue_loss |
|
|
|
|
|
torch.manual_seed(1) |
|
|
|
|
|
|
|
logging.set_verbosity_error() |
|
|
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
stl_list = [ |
|
'birb-style', |
|
'cute-game-style', |
|
'depthmap', |
|
'line-art', |
|
'low-poly-hd-logos-icons' |
|
] |
|
|
|
for stl in stl_list: |
|
if not os.path.exists(stl): |
|
os.mkdir(stl) |
|
hf_hub_download(repo_id=f"sd-concepts-library/{stl}", filename="learned_embeds.bin", local_dir=f"./{stl}") |
|
|
|
img_size_opt_dict = { |
|
"512x512 - best quality but very slow": (512,512), |
|
"256x256 - not good quality but still slow" : (256,256), |
|
"128x128 - poor quality but faster" : (128,128), |
|
} |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") |
|
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") |
|
|
|
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) |
|
|
|
|
|
vae = vae.to(torch_device) |
|
text_encoder = text_encoder.to(torch_device) |
|
unet = unet.to(torch_device); |
|
|
|
|
|
|
|
def latents_to_pil(latents): |
|
|
|
latents = (1 / 0.18215) * latents |
|
with torch.no_grad(): |
|
image = vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
images = (image * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
return pil_images |
|
|
|
|
|
def set_timesteps(scheduler, num_inference_steps): |
|
scheduler.set_timesteps(num_inference_steps) |
|
scheduler.timesteps = scheduler.timesteps.to(torch.float32) |
|
|
|
|
|
def generate_with_embs(text_embeddings, text_input, loss_fn = None, loss_scale = 200, guidance_scale = 7.5, |
|
seed_value = 1, num_inference_steps = 50, additional_guidence = False, hight_width = (512, 512)): |
|
height, width = hight_width |
|
|
|
|
|
|
|
generator = torch.manual_seed(seed_value) |
|
batch_size = 1 |
|
|
|
|
|
max_length = text_input.input_ids.shape[-1] |
|
uncond_input = tokenizer( |
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" |
|
) |
|
with torch.no_grad(): |
|
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] |
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
set_timesteps(scheduler, num_inference_steps) |
|
|
|
|
|
latents = torch.randn( |
|
(batch_size, unet.in_channels, height // 8, width // 8), |
|
generator=generator, |
|
) |
|
latents = latents.to(torch_device) |
|
latents = latents * scheduler.init_noise_sigma |
|
|
|
|
|
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) |
|
sigma = scheduler.sigmas[i] |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
with torch.no_grad(): |
|
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] |
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if i%5 == 0 and additional_guidence: |
|
|
|
latents = latents.detach().requires_grad_() |
|
|
|
|
|
latents_x0 = latents - sigma * noise_pred |
|
|
|
|
|
|
|
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 |
|
|
|
|
|
loss = loss_fn(denoised_images) * loss_scale |
|
|
|
|
|
if i%10==0: |
|
print(i, 'loss:', loss.item()) |
|
|
|
|
|
cond_grad = torch.autograd.grad(loss, latents)[0] |
|
|
|
|
|
|
|
latents = latents.detach() - cond_grad * sigma**2 |
|
|
|
|
|
latents = scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
|
|
|
|
return latents_to_pil(latents)[0] |
|
|
|
def get_output_embeds(input_embeddings): |
|
|
|
bsz, seq_len = input_embeddings.shape[:2] |
|
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) |
|
|
|
|
|
|
|
encoder_outputs = text_encoder.text_model.encoder( |
|
inputs_embeds=input_embeddings, |
|
attention_mask=None, |
|
causal_attention_mask=causal_attention_mask.to(torch_device), |
|
output_attentions=None, |
|
output_hidden_states=True, |
|
return_dict=None, |
|
) |
|
|
|
|
|
output = encoder_outputs[0] |
|
|
|
|
|
output = text_encoder.text_model.final_layer_norm(output) |
|
|
|
|
|
return output |
|
|
|
|
|
token_emb_layer = text_encoder.text_model.embeddings.token_embedding |
|
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding |
|
|
|
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] |
|
position_embeddings = pos_emb_layer(position_ids) |
|
|
|
def generate_images(prompt, num_inference_steps, stl_list, img_size): |
|
|
|
prompt = prompt + ' in the style of puppy' |
|
height_width = img_size_opt_dict[img_size] |
|
|
|
text_input = tokenizer(prompt, padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, return_tensors="pt") |
|
input_ids = text_input.input_ids.to(torch_device) |
|
|
|
|
|
token_embeddings = token_emb_layer(input_ids) |
|
|
|
wo_guide_lst = [] |
|
guide_lst = [] |
|
for i, stl in enumerate(stl_list): |
|
stl_embed = torch.load(f'{stl}/learned_embeds.bin') |
|
|
|
|
|
replacement_token_embedding = stl_embed[f'<{stl}>'].to(torch_device) |
|
|
|
|
|
token_embeddings[0, min(torch.where(input_ids[0]==tokenizer.eos_token_id)[0]) - 1] = replacement_token_embedding.to(torch_device) |
|
|
|
|
|
input_embeddings = token_embeddings + position_embeddings |
|
|
|
|
|
modified_output_embeddings = get_output_embeds(input_embeddings) |
|
|
|
|
|
pil_im = generate_with_embs(modified_output_embeddings, |
|
num_inference_steps = num_inference_steps, |
|
text_input = text_input, |
|
seed_value = i,additional_guidence = False, |
|
hight_width = height_width) |
|
wo_guide_lst.append((pil_im,stl)) |
|
|
|
pil_im = generate_with_embs(modified_output_embeddings, |
|
num_inference_steps = num_inference_steps, |
|
text_input = text_input, |
|
loss_fn = hue_loss, |
|
additional_guidence = True, |
|
hight_width = height_width, |
|
seed_value = i) |
|
guide_lst.append((pil_im,stl)) |
|
|
|
return wo_guide_lst, guide_lst |
|
|