Spaces:
Running
Running
File size: 4,156 Bytes
540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 09ac7fa 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 09ac7fa 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a 08c6b0b 540424a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import streamlit as st
import os
import json
from dotenv import load_dotenv
# from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings, OpenAI
from langchain.schema import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains.retrieval import create_retrieval_chain
from langchain_core.prompts import PromptTemplate
# Load environment variables
load_dotenv()
# Get the OpenAI API key from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
# Initialize session state variables
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
# if 'qa_chain' not in st.session_state:
# st.session_state.qa_chain = None
# def setup_qa_chain(vector_store):
# """Set up the QA chain with a retriever."""
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
# qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
# return qa_chain
prompt_template = PromptTemplate.from_template("Answer the following query based on a number of context documents Query:{query},Context:{context},Answer:")
def main():
# Set page title and header
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
st.set_page_config(page_title="LibRAG", page_icon="π")
st.title("Boston Public Library Database π")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Sidebar for initialization
# st.sidebar.header("Initialize Knowledge Base")
# if st.sidebar.button("Load Data"):
# try:
# st.session_state.vector_store = FAISS.load_local(
# "vector-store", embeddings, allow_dangerous_deserialization=True
# )
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
# st.sidebar.success("Knowledge base loaded successfully!")
# except Exception as e:
# st.sidebar.error(f"Error loading data: {e}")
st.session_state.vector_store = FAISS.load_local("vector-store", embeddings, allow_dangerous_deserialization=True)
st.session_state.combine_docs_chain = create_stuff_documents_chain(llm, prompt_template)
st.session_stateretrieval_chain = create_retrieval_chain(st.session_state.vector_store.as_retriever(search_kwargs={"k": 3}), combine_docs_chain)
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
# Query input and processing
st.header("Ask a Question")
query = st.text_input("Enter your question about BPL's database")
response = llm.invoke()
if query:
# Check if vector store and QA chain are initialized
if st.session_state.response is None:
st.warning("Please load the knowledge base first using the sidebar.")
else:
# Run the query
try:
st.session_state.response = retrieval_chain.invoke({"input": f"{query}"})
# Display answer
st.subheader("Answer")
st.write(response["result"])
# Display sources
st.subheader("Sources")
sources = response["source_documents"]
for i, doc in enumerate(sources, 1):
with st.expander(f"Source {i}"):
st.write(f"**Content:** {doc.page_content}")
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
except Exception as e:
st.error(f"An error occurred: {e}")
if __name__ == "__main__":
main()
|