LibRAG / streamlit-rag-app.py
daniel Foley
test hf concurrence
08c6b0b
raw
history blame
4.16 kB
import streamlit as st
import os
import json
from dotenv import load_dotenv
# from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings, OpenAI
from langchain.schema import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains.retrieval import create_retrieval_chain
from langchain_core.prompts import PromptTemplate
# Load environment variables
load_dotenv()
# Get the OpenAI API key from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
# Initialize session state variables
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
# if 'qa_chain' not in st.session_state:
# st.session_state.qa_chain = None
# def setup_qa_chain(vector_store):
# """Set up the QA chain with a retriever."""
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
# llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
# qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
# return qa_chain
prompt_template = PromptTemplate.from_template("Answer the following query based on a number of context documents Query:{query},Context:{context},Answer:")
def main():
# Set page title and header
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
st.set_page_config(page_title="LibRAG", page_icon="πŸ“š")
st.title("Boston Public Library Database πŸ“š")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Sidebar for initialization
# st.sidebar.header("Initialize Knowledge Base")
# if st.sidebar.button("Load Data"):
# try:
# st.session_state.vector_store = FAISS.load_local(
# "vector-store", embeddings, allow_dangerous_deserialization=True
# )
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
# st.sidebar.success("Knowledge base loaded successfully!")
# except Exception as e:
# st.sidebar.error(f"Error loading data: {e}")
st.session_state.vector_store = FAISS.load_local("vector-store", embeddings, allow_dangerous_deserialization=True)
st.session_state.combine_docs_chain = create_stuff_documents_chain(llm, prompt_template)
st.session_stateretrieval_chain = create_retrieval_chain(st.session_state.vector_store.as_retriever(search_kwargs={"k": 3}), combine_docs_chain)
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
# Query input and processing
st.header("Ask a Question")
query = st.text_input("Enter your question about BPL's database")
response = llm.invoke()
if query:
# Check if vector store and QA chain are initialized
if st.session_state.response is None:
st.warning("Please load the knowledge base first using the sidebar.")
else:
# Run the query
try:
st.session_state.response = retrieval_chain.invoke({"input": f"{query}"})
# Display answer
st.subheader("Answer")
st.write(response["result"])
# Display sources
st.subheader("Sources")
sources = response["source_documents"]
for i, doc in enumerate(sources, 1):
with st.expander(f"Source {i}"):
st.write(f"**Content:** {doc.page_content}")
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
except Exception as e:
st.error(f"An error occurred: {e}")
if __name__ == "__main__":
main()