Create_image / app.py
ssboost's picture
Update app.py
9944bd6 verified
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models import unet_2d_condition
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np
from huggingface_hub import InferenceClient
import os
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet_t2i,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
).to(device)
pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet_i2i,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
).to(device)
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
ip_adapter_image=None,
ip_adapter_scale=0.5,
negative_prompt="",
seed=0,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=25):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# width์™€ height๋ฅผ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
width = (width // 8) * 8
height = (height // 8) * 8
if ip_adapter_image is None:
pipe_t2i.to(device)
image = pipe_t2i(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width, # ์กฐ์ •๋œ ๊ฐ’์„ ์‚ฌ์šฉ
height=height, # ์กฐ์ •๋œ ๊ฐ’์„ ์‚ฌ์šฉ
generator=generator
).images[0]
image.save("generated_image.jpg")
return image, "generated_image.jpg"
else:
pipe_i2i.to(device)
image_encoder.to(device)
pipe_i2i.image_encoder = image_encoder
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
image = pipe_i2i(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height, # ์กฐ์ •๋œ ๊ฐ’์„ ์‚ฌ์šฉ
width=width, # ์กฐ์ •๋œ ๊ฐ’์„ ์‚ฌ์šฉ
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator
).images[0]
image.save("generated_image.jpg")
return image, "generated_image.jpg"
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
"""
with gr.Blocks(css=css) as Kolors:
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
generated_prompt = gr.Textbox(
label="ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ",
placeholder="์ด๋ฏธ์ง€ ์ƒ์„ฑ์— ์‚ฌ์šฉํ•  ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•ด ์ฃผ์„ธ์š”.",
lines=2
)
with gr.Row():
ip_adapter_image = gr.Image(label="์ฐธ๊ณ ํ•  ์ด๋ฏธ์ง€ (์„ ํƒ)", type="pil")
with gr.Row(visible=False): # Advanced Settings ์ˆจ๊น€
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
width = gr.Slider(
label="๊ฐ€๋กœ",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="์„ธ๋กœ",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
ip_adapter_scale = gr.Slider(
label="์ด๋ฏธ์ง€ ์˜ํ–ฅ๋ ฅ",
info="1์— ๊ฐ€๊นŒ์šธ ์ˆ˜๋ก ์›๋ณธ ์ด๋ฏธ์ง€๋ฅผ ์ตœ๋Œ€ํ•œ ์œ ์ง€ํ•˜๋ฉฐ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค.",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
with gr.Row():
run_button = gr.Button("์ด๋ฏธ์ง€ ์ƒ์„ฑํ•˜๊ธฐ")
# ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋ฅผ ์Šฌ๋ผ์ด๋”์— ๋ฐ˜์˜ํ•˜๋Š” ์ด๋ฒคํŠธ ์ถ”๊ฐ€
ip_adapter_image.change(
lambda img: (img.width if img else 1024, img.height if img else 1024),
inputs=ip_adapter_image,
outputs=[width, height] # ์Šฌ๋ผ์ด๋” ๊ฐ’์— ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๋ฐ˜์˜
)
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
download_button = gr.File(label="์ด๋ฏธ์ง€ ๋‹ค์šด๋ฐ›๊ธฐ")
# ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฐ ๋‹ค์šด๋กœ๋“œ ํŒŒ์ผ ๊ฒฝ๋กœ ์„ค์ •
run_button.click(
fn=infer,
inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, download_button]
)
Kolors.queue().launch(debug=True)