Spaces:
Sleeping
comments: true
description: >-
Access object detection capabilities of YOLOv8 via our RESTful API. Learn how
to use the YOLO Inference API with Python or CLI for swift object detection.
keywords: >-
Ultralytics, YOLOv8, Inference API, object detection, RESTful API, Python,
CLI, Quickstart
YOLO Inference API
The YOLO Inference API allows you to access the YOLOv8 object detection capabilities via a RESTful API. This enables you to run object detection on images without the need to install and set up the YOLOv8 environment locally.
Screenshot of the Inference API section in the trained model Preview tab.
API URL
The API URL is the address used to access the YOLO Inference API. In this case, the base URL is:
https://api.ultralytics.com/v1/predict
Example Usage in Python
To access the YOLO Inference API with the specified model and API key using Python, you can use the following code:
import requests
# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
In this example, replace API_KEY
with your actual API key, MODEL_ID
with the desired model ID, and path/to/image.jpg
with the path to the image you want to analyze.
Example Usage with CLI
You can use the YOLO Inference API with the command-line interface (CLI) by utilizing the curl
command. Replace API_KEY
with your actual API key, MODEL_ID
with the desired model ID, and image.jpg
with the path to the image you want to analyze:
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
Passing Arguments
This command sends a POST request to the YOLO Inference API with the specified MODEL_ID
in the URL and the API_KEY
in the request headers
, along with the image file specified by @path/to/image.jpg
.
Here's an example of passing the size
, confidence
, and iou
arguments via the API URL using the requests
library in Python:
import requests
# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
In this example, the data
dictionary contains the query arguments size
, confidence
, and iou
, which tells the API to run inference at image size 640 with confidence and IoU thresholds of 0.25 and 0.45.
This will send the query parameters along with the file in the POST request. See the table below for a full list of available inference arguments.
Inference Argument | Default | Type | Notes |
---|---|---|---|
size |
640 |
int |
valid range is 32 - 1280 pixels |
confidence |
0.25 |
float |
valid range is 0.01 - 1.0 |
iou |
0.45 |
float |
valid range is 0.0 - 0.95 |
url |
'' |
str |
optional image URL if not image file is passed |
normalize |
False |
bool |
Return JSON format
The YOLO Inference API returns a JSON list with the detection results. The format of the JSON list will be the same as the one produced locally by the results[0].tojson()
command.
The JSON list contains information about the detected objects, their coordinates, classes, and confidence scores.
Detect Model Format
YOLO detection models, such as yolov8n.pt
, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format.
!!! example "Detect Model JSON Response"
=== "Local"
```python
from ultralytics import YOLO
# Load model
model = YOLO('yolov8n.pt')
# Run inference
results = model('image.jpg')
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "CLI API"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python API"
```python
import requests
# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "JSON Response"
```json
{
"success": True,
"message": "Inference complete.",
"data": [
{
"name": "person",
"class": 0,
"confidence": 0.8359682559967041,
"box": {
"x1": 0.08974208831787109,
"y1": 0.27418340047200523,
"x2": 0.8706787109375,
"y2": 0.9887352837456598
}
},
{
"name": "person",
"class": 0,
"confidence": 0.8189555406570435,
"box": {
"x1": 0.5847355842590332,
"y1": 0.05813225640190972,
"x2": 0.8930277824401855,
"y2": 0.9903111775716146
}
},
{
"name": "tie",
"class": 27,
"confidence": 0.2909725308418274,
"box": {
"x1": 0.3433395862579346,
"y1": 0.6070465511745877,
"x2": 0.40964522361755373,
"y2": 0.9849439832899306
}
}
]
}
```
Segment Model Format
YOLO segmentation models, such as yolov8n-seg.pt
, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format.
!!! example "Segment Model JSON Response"
=== "Local"
```python
from ultralytics import YOLO
# Load model
model = YOLO('yolov8n-seg.pt')
# Run inference
results = model('image.jpg')
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "CLI API"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python API"
```python
import requests
# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "JSON Response"
Note `segments` `x` and `y` lengths may vary from one object to another. Larger or more complex objects may have more segment points.
```json
{
"success": True,
"message": "Inference complete.",
"data": [
{
"name": "person",
"class": 0,
"confidence": 0.856913149356842,
"box": {
"x1": 0.1064866065979004,
"y1": 0.2798851860894097,
"x2": 0.8738358497619629,
"y2": 0.9894873725043403
},
"segments": {
"x": [
0.421875,
0.4203124940395355,
0.41718751192092896
...
],
"y": [
0.2888889014720917,
0.2916666567325592,
0.2916666567325592
...
]
}
},
{
"name": "person",
"class": 0,
"confidence": 0.8512625694274902,
"box": {
"x1": 0.5757311820983887,
"y1": 0.053943040635850696,
"x2": 0.8960096359252929,
"y2": 0.985154045952691
},
"segments": {
"x": [
0.7515624761581421,
0.75,
0.7437499761581421
...
],
"y": [
0.0555555559694767,
0.05833333358168602,
0.05833333358168602
...
]
}
},
{
"name": "tie",
"class": 27,
"confidence": 0.6485961675643921,
"box": {
"x1": 0.33911995887756347,
"y1": 0.6057066175672743,
"x2": 0.4081430912017822,
"y2": 0.9916408962673611
},
"segments": {
"x": [
0.37187498807907104,
0.37031251192092896,
0.3687500059604645
...
],
"y": [
0.6111111044883728,
0.6138888597488403,
0.6138888597488403
...
]
}
}
]
}
```
Pose Model Format
YOLO pose models, such as yolov8n-pose.pt
, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format.
!!! example "Pose Model JSON Response"
=== "Local"
```python
from ultralytics import YOLO
# Load model
model = YOLO('yolov8n-seg.pt')
# Run inference
results = model('image.jpg')
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "CLI API"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python API"
```python
import requests
# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "JSON Response"
Note COCO-keypoints pretrained models will have 17 human keypoints. The `visible` part of the keypoints indicates whether a keypoint is visible or obscured. Obscured keypoints may be outside the image or may not be visible, i.e. a person's eyes facing away from the camera.
```json
{
"success": True,
"message": "Inference complete.",
"data": [
{
"name": "person",
"class": 0,
"confidence": 0.8439509868621826,
"box": {
"x1": 0.1125,
"y1": 0.28194444444444444,
"x2": 0.7953125,
"y2": 0.9902777777777778
},
"keypoints": {
"x": [
0.5058594942092896,
0.5103894472122192,
0.4920862317085266
...
],
"y": [
0.48964157700538635,
0.4643048942089081,
0.4465252459049225
...
],
"visible": [
0.8726999163627625,
0.653947651386261,
0.9130823612213135
...
]
}
},
{
"name": "person",
"class": 0,
"confidence": 0.7474289536476135,
"box": {
"x1": 0.58125,
"y1": 0.0625,
"x2": 0.8859375,
"y2": 0.9888888888888889
},
"keypoints": {
"x": [
0.778544008731842,
0.7976160049438477,
0.7530890107154846
...
],
"y": [
0.27595141530036926,
0.2378823608160019,
0.23644638061523438
...
],
"visible": [
0.8900790810585022,
0.789978563785553,
0.8974530100822449
...
]
}
}
]
}
```