Spaces:
Paused
Paused
import os | |
os.system("pip install gradio==2.4.6") | |
import sys | |
import gradio as gr | |
os.system( | |
"pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html" | |
) | |
# clone and install Detic | |
os.system( | |
"git clone https://github.com/facebookresearch/Detic.git --recurse-submodules" | |
) | |
os.chdir("Detic") | |
# Install detectron2 | |
import torch | |
# Some basic setup: | |
# Setup detectron2 logger | |
import detectron2 | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
# import some common libraries | |
import sys | |
import numpy as np | |
import os, json, cv2, random | |
# import some common detectron2 utilities | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
# Detic libraries | |
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") | |
sys.path.insert(0, "third_party/CenterNet2/") | |
from centernet.config import add_centernet_config | |
from detic.config import add_detic_config | |
from detic.modeling.utils import reset_cls_test | |
from PIL import Image | |
# Build the detector and download our pretrained weights | |
cfg = get_cfg() | |
add_centernet_config(cfg) | |
add_detic_config(cfg) | |
cfg.MODEL.DEVICE = "cpu" | |
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") | |
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model | |
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand" | |
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = ( | |
True # For better visualization purpose. Set to False for all classes. | |
) | |
predictor = DefaultPredictor(cfg) | |
# Setup the model's vocabulary using build-in datasets | |
BUILDIN_CLASSIFIER = { | |
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy", | |
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy", | |
"openimages": "datasets/metadata/oid_clip_a+cname.npy", | |
"coco": "datasets/metadata/coco_clip_a+cname.npy", | |
} | |
BUILDIN_METADATA_PATH = { | |
"lvis": "lvis_v1_val", | |
"objects365": "objects365_v2_val", | |
"openimages": "oid_val_expanded", | |
"coco": "coco_2017_val", | |
} | |
vocabulary = "lvis" # change to 'lvis', 'objects365', 'openimages', or 'coco' | |
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) | |
classifier = BUILDIN_CLASSIFIER[vocabulary] | |
num_classes = len(metadata.thing_classes) | |
reset_cls_test(predictor.model, classifier, num_classes) | |
os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg") | |
def inference(img): | |
im = cv2.imread(img) | |
outputs = predictor(im) | |
v = Visualizer(im[:, :, ::-1], metadata) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
detected_objects = [] | |
box_locations = outputs["instances"].pred_boxes | |
box_loc_screen = box_locations.tensor.cpu().numpy() | |
for i, box_coord in enumerate(box_loc_screen): | |
x0, y0, x1, y1 = box_coord | |
width = x1 - x0 | |
height = y1 - y0 | |
predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]] | |
detected_objects.append( | |
{ | |
"prediction": predicted_label, | |
"x": int(x0), | |
"y": int(y0), | |
"w": int(width), | |
"h": int(height), | |
} | |
) | |
return Image.fromarray(np.uint8(out.get_image())).convert("RGB"), detected_objects | |
title = "Detic" | |
description = "Gradio demo for Detic: Detecting Twenty-thousand Classes using Image-level Supervision. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.02605' target='_blank'>Detecting Twenty-thousand Classes using Image-level Supervision</a> | <a href='https://github.com/facebookresearch/Detic' target='_blank'>Github Repo</a></p>" | |
examples = [["desk.jpg"]] | |
gr.Interface( | |
inference, | |
inputs=gr.inputs.Image(type="filepath"), | |
outputs=[ | |
gr.outputs.Image(label="Visualization", type="pil"), | |
gr.outputs.JSON(label="Detected Objects"), | |
], | |
enable_queue=True, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).launch() | |