DeticChatGPT / app.py
taesiri's picture
added json output
8b8fc21
raw
history blame
4.38 kB
import os
os.system("pip install gradio==2.4.6")
import sys
import gradio as gr
os.system(
"pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html"
)
# clone and install Detic
os.system(
"git clone https://github.com/facebookresearch/Detic.git --recurse-submodules"
)
os.chdir("Detic")
# Install detectron2
import torch
# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import sys
import numpy as np
import os, json, cv2, random
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
# Detic libraries
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/")
sys.path.insert(0, "third_party/CenterNet2/")
from centernet.config import add_centernet_config
from detic.config import add_detic_config
from detic.modeling.utils import reset_cls_test
from PIL import Image
# Build the detector and download our pretrained weights
cfg = get_cfg()
add_centernet_config(cfg)
add_detic_config(cfg)
cfg.MODEL.DEVICE = "cpu"
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml")
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand"
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = (
True # For better visualization purpose. Set to False for all classes.
)
predictor = DefaultPredictor(cfg)
# Setup the model's vocabulary using build-in datasets
BUILDIN_CLASSIFIER = {
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy",
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy",
"openimages": "datasets/metadata/oid_clip_a+cname.npy",
"coco": "datasets/metadata/coco_clip_a+cname.npy",
}
BUILDIN_METADATA_PATH = {
"lvis": "lvis_v1_val",
"objects365": "objects365_v2_val",
"openimages": "oid_val_expanded",
"coco": "coco_2017_val",
}
vocabulary = "lvis" # change to 'lvis', 'objects365', 'openimages', or 'coco'
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
classifier = BUILDIN_CLASSIFIER[vocabulary]
num_classes = len(metadata.thing_classes)
reset_cls_test(predictor.model, classifier, num_classes)
os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg")
def inference(img):
im = cv2.imread(img)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1], metadata)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
detected_objects = []
box_locations = outputs["instances"].pred_boxes
box_loc_screen = box_locations.tensor.cpu().numpy()
for i, box_coord in enumerate(box_loc_screen):
x0, y0, x1, y1 = box_coord
width = x1 - x0
height = y1 - y0
predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]]
detected_objects.append(
{
"prediction": predicted_label,
"x": int(x0),
"y": int(y0),
"w": int(width),
"h": int(height),
}
)
return Image.fromarray(np.uint8(out.get_image())).convert("RGB"), detected_objects
title = "Detic"
description = "Gradio demo for Detic: Detecting Twenty-thousand Classes using Image-level Supervision. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.02605' target='_blank'>Detecting Twenty-thousand Classes using Image-level Supervision</a> | <a href='https://github.com/facebookresearch/Detic' target='_blank'>Github Repo</a></p>"
examples = [["desk.jpg"]]
gr.Interface(
inference,
inputs=gr.inputs.Image(type="filepath"),
outputs=[
gr.outputs.Image(label="Visualization", type="pil"),
gr.outputs.JSON(label="Detected Objects"),
],
enable_queue=True,
title=title,
description=description,
article=article,
examples=examples,
).launch()