DreamStream-1's picture
Update app.py
3aa1ab2 verified
raw
history blame
9.23 kB
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import requests
import csv
import time
import re
from bs4 import BeautifulSoup
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
import logging
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Load the pre-trained model (cached for performance)
def load_model():
return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
sentiment_model = load_model()
# Define the function to analyze sentiment
def analyze_sentiment(user_input):
result = sentiment_model(user_input)[0]
sentiment = result['label'].lower() # Convert to lowercase for easier comparison
# Customize messages based on detected sentiment
if sentiment == 'negative':
return "Mood Detected: Negative πŸ˜”\n\nStay positive! 🌟 Remember, tough times don't last, but tough people do!"
elif sentiment == 'neutral':
return "Mood Detected: Neutral 😐\n\nIt's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
elif sentiment == 'positive':
return "Mood Detected: Positive 😊\n\nYou're on the right track! Keep shining! 🌞"
else:
return "Mood Detected: Unknown πŸ€”\n\nKeep going, you're doing great!"
# Load pre-trained model and tokenizer
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer, model = load_model()
# Set page config as the very first Streamlit command
st.set_page_config(page_title="Mental Health & Wellness Assistant", layout="wide")
# Display header
st.title("Mental Health & Wellness Assistant")
# User input for text (emotion detection)
user_input = st.text_area("How are you feeling today?", "Enter your thoughts here...")
# Model prediction
if user_input:
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
result = pipe(user_input)
# Extracting the emotion from the model's result
emotion = result[0]['label']
# Display emotion
st.write(f"**Emotion Detected:** {emotion}")
# Provide suggestions based on the detected emotion
if emotion == 'joy':
st.write("You're feeling happy! Keep up the great mood!")
st.write("Useful Resources:")
st.markdown("[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
st.write("[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")
elif emotion == 'anger':
st.write("You're feeling angry. It's okay to feel this way. Let's try to calm down.")
st.write("Useful Resources:")
st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
st.write("[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)")
st.write("[Dealing with Anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/MIc299Flibs)")
elif emotion == 'fear':
st.write("You're feeling fearful. Take a moment to breathe and relax.")
st.write("Useful Resources:")
st.markdown("[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
st.write("[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/yGKKz185M5o)")
elif emotion == 'sadness':
st.write("You're feeling sad. It's okay to take a break.")
st.write("Useful Resources:")
st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
st.write("[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/-e-4Kx5px_I)")
elif emotion == 'surprise':
st.write("You're feeling surprised. It's okay to feel neutral!")
st.write("Useful Resources:")
st.markdown("[Managing Stress](https://www.health.harvard.edu/health-a-to-z)")
st.write("[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
st.write("Relaxation Videos:")
st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")
# Chatbot functionality
def chatbot_interface():
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
chatbot = gr.Chatbot(label="Chat")
demo = gr.Interface(
chat,
[gr.Textbox(lines=1, label="Message"), "state"],
[chatbot, "state"],
allow_flagging="never",
title="Mental Health Chatbot",
description="Your personal mental health assistant.",
)
return demo
# Launch the interfaces
if __name__ == "__main__":
# Create a tabbed interface for different features
tabs = [
gr.TabItem("Sentiment Analysis", chatbot_ui()),
gr.TabItem("Emotion Detection", chatbot_ui()),
gr.TabItem("Google Places Search", chatbot_ui()),
]
with gr.Blocks() as demo:
gr.Tabs(tabs)
demo.launch()