File size: 9,232 Bytes
8dc6340
 
 
7f5a352
8dc6340
 
42dd9d9
8dc6340
2c7367f
f9f5c08
3aa1ab2
 
 
 
 
 
 
 
 
 
 
385ba0f
a372e79
f9f5c08
a372e79
47fbf8a
8dc6340
 
47fbf8a
a372e79
 
 
 
 
b102079
47fbf8a
 
 
 
 
a372e79
3fa17a3
47fbf8a
8dc6340
 
 
 
 
 
47fbf8a
8dc6340
47fbf8a
 
 
f9f5c08
8dc6340
47fbf8a
8dc6340
3fa17a3
f9f5c08
47fbf8a
8dc6340
 
 
 
 
 
47fbf8a
42dd9d9
 
 
47fbf8a
 
 
 
 
 
42dd9d9
47fbf8a
 
 
 
 
 
 
 
42dd9d9
47fbf8a
 
 
8dc6340
 
 
3aa1ab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dc6340
3aa1ab2
 
 
 
 
 
 
 
 
 
47fbf8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import requests
import csv
import time
import re
from bs4 import BeautifulSoup
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
import logging

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function
def chat(message, history):
    history = history or []
    message = message.lower()
    
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"

    except Exception as e:
        response = f"An error occurred: {str(e)}"
    
    history.append((message, response))
    return history, history

# Load the pre-trained model (cached for performance)
def load_model():
    return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')

sentiment_model = load_model()

# Define the function to analyze sentiment
def analyze_sentiment(user_input):
    result = sentiment_model(user_input)[0]
    sentiment = result['label'].lower()  # Convert to lowercase for easier comparison
    
    # Customize messages based on detected sentiment
    if sentiment == 'negative':
        return "Mood Detected: Negative πŸ˜”\n\nStay positive! 🌟 Remember, tough times don't last, but tough people do!"
    elif sentiment == 'neutral':
        return "Mood Detected: Neutral 😐\n\nIt's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
    elif sentiment == 'positive':
        return "Mood Detected: Positive 😊\n\nYou're on the right track! Keep shining! 🌞"
    else:
        return "Mood Detected: Unknown πŸ€”\n\nKeep going, you're doing great!"

# Load pre-trained model and tokenizer
@st.cache_resource
def load_model():
    tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    return tokenizer, model

tokenizer, model = load_model()

# Set page config as the very first Streamlit command
st.set_page_config(page_title="Mental Health & Wellness Assistant", layout="wide")

# Display header
st.title("Mental Health & Wellness Assistant")

# User input for text (emotion detection)
user_input = st.text_area("How are you feeling today?", "Enter your thoughts here...")

# Model prediction
if user_input:
    pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
    result = pipe(user_input)

    # Extracting the emotion from the model's result
    emotion = result[0]['label']

    # Display emotion
    st.write(f"**Emotion Detected:** {emotion}")
    
    # Provide suggestions based on the detected emotion
    if emotion == 'joy':
        st.write("You're feeling happy! Keep up the great mood!")
        st.write("Useful Resources:")
        st.markdown("[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
        st.write("[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
        st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
        
        st.write("Relaxation Videos:")
        st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")

    elif emotion == 'anger':
        st.write("You're feeling angry. It's okay to feel this way. Let's try to calm down.")
        st.write("Useful Resources:")
        st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
        st.write("[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)")
        st.write("[Dealing with Anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
        
        st.write("Relaxation Videos:")
        st.markdown("[Watch on YouTube](https://youtu.be/MIc299Flibs)")

    elif emotion == 'fear':
        st.write("You're feeling fearful. Take a moment to breathe and relax.")
        st.write("Useful Resources:")
        st.markdown("[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)")
        st.write("[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
        st.write("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
        
        st.write("Relaxation Videos:")
        st.markdown("[Watch on YouTube](https://youtu.be/yGKKz185M5o)")

    elif emotion == 'sadness':
        st.write("You're feeling sad. It's okay to take a break.")
        st.write("Useful Resources:")
        st.markdown("[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)")
        st.write("[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
        
        st.write("Relaxation Videos:")
        st.markdown("[Watch on YouTube](https://youtu.be/-e-4Kx5px_I)")

    elif emotion == 'surprise':
        st.write("You're feeling surprised. It's okay to feel neutral!")
        st.write("Useful Resources:")
        st.markdown("[Managing Stress](https://www.health.harvard.edu/health-a-to-z)")
        st.write("[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)")
        
        st.write("Relaxation Videos:")
        st.markdown("[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)")

# Chatbot functionality
def chatbot_interface():
    def chat(message, history):
        history = history or []
        message = message.lower()
        
        try:
            # Predict the tag
            results = model.predict([bag_of_words(message, words)])
            results_index = np.argmax(results)
            tag = labels[results_index]

            # Match tag with intent and choose a random response
            for tg in data["intents"]:
                if tg['tag'] == tag:
                    responses = tg['responses']
                    response = random.choice(responses)
                    break
            else:
                response = "I'm sorry, I didn't understand that. Could you please rephrase?"

        except Exception as e:
            response = f"An error occurred: {str(e)}"
        
        history.append((message, response))
        return history, history

    chatbot = gr.Chatbot(label="Chat")
    demo = gr.Interface(
        chat,
        [gr.Textbox(lines=1, label="Message"), "state"],
        [chatbot, "state"],
        allow_flagging="never",
        title="Mental Health Chatbot",
        description="Your personal mental health assistant.",
    )
    return demo

# Launch the interfaces
if __name__ == "__main__":
    # Create a tabbed interface for different features
    tabs = [
        gr.TabItem("Sentiment Analysis", chatbot_ui()),
        gr.TabItem("Emotion Detection", chatbot_ui()),
        gr.TabItem("Google Places Search", chatbot_ui()),
    ]

    with gr.Blocks() as demo:
        gr.Tabs(tabs)

    demo.launch()