Spaces:
Running
Running
import io | |
import os | |
import math | |
from queue import Queue | |
from threading import Thread | |
from typing import Optional | |
import numpy as np | |
import spaces | |
import gradio as gr | |
import torch | |
import nltk | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from pydub import AudioSegment | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
nltk.download('punkt_tab') | |
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32 | |
repo_id = "ai4bharat/indic-parler-tts-pretrained" | |
finetuned_repo_id = "ai4bharat/indic-parler-tts" | |
model = ParlerTTSForConditionalGeneration.from_pretrained( | |
repo_id, attn_implementation="eager", torch_dtype=torch_dtype, | |
).to(device) | |
finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained( | |
finetuned_repo_id, attn_implementation="eager", torch_dtype=torch_dtype, | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
SAMPLE_RATE = feature_extractor.sampling_rate | |
SEED = 42 | |
default_text = "Please surprise me and speak in whatever voice you enjoy." | |
examples = [ | |
[ | |
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.", | |
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।।", | |
"Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.", | |
"Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.", | |
3.0 | |
] | |
] | |
finetuned_examples = [ | |
[ | |
"मुले बागेत खेळत आहेत आणि पक्षी किलबिलाट करत आहेत.", | |
"Sunita speaks slowly in a calm, moderate-pitched voice, delivering the news with a neutral tone. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"আমাদের ছোটো নদী চলে বাঁকে বাঁকে বৈশাখ মাসে তার হাঁটু জল থাকে।", | |
"Arjun speaks at a moderate pace and pitch, with a clear, neutral tone and no emotional emphasis. The recording is very high quality with no background noise.", | |
3.0 | |
], | |
[ | |
"குழந்தைகள் தோட்டத்தில் விளையாடுகிறார்கள், பறவைகள் கிண்டல் செய்கின்றன.", | |
"Jaya speaks with a slightly low-pitched, quite monotone voice at a slightly faster-than-average pace in a confined space with very clear audio.", | |
3.0 | |
] | |
] | |
def numpy_to_mp3(audio_array, sampling_rate): | |
# Normalize audio_array if it's floating-point | |
if np.issubdtype(audio_array.dtype, np.floating): | |
max_val = np.max(np.abs(audio_array)) | |
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range | |
audio_array = audio_array.astype(np.int16) | |
# Create an audio segment from the numpy array | |
audio_segment = AudioSegment( | |
audio_array.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio_array.dtype.itemsize, | |
channels=1 | |
) | |
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality | |
mp3_io = io.BytesIO() | |
audio_segment.export(mp3_io, format="mp3", bitrate="320k") | |
# Get the MP3 bytes | |
mp3_bytes = mp3_io.getvalue() | |
mp3_io.close() | |
return mp3_bytes | |
sampling_rate = model.audio_encoder.config.sampling_rate | |
frame_rate = model.audio_encoder.config.frame_rate | |
def generate_base(text, description,): | |
# Initialize variables | |
chunk_size = 25 # Process max 25 words or a sentence at a time | |
# Tokenize the full text and description | |
inputs = description_tokenizer(description, return_tensors="pt").to(device) | |
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences | |
curr_sentence = "" | |
chunks = [] | |
for sentence in sentences_text: | |
candidate = " ".join([curr_sentence, sentence]) | |
if len(candidate.split()) >= chunk_size: | |
chunks.append(curr_sentence) | |
curr_sentence = sentence | |
else: | |
curr_sentence = candidate | |
if curr_sentence != "": | |
chunks.append(curr_sentence) | |
print(chunks) | |
all_audio = [] | |
# Process each chunk | |
for chunk in chunks: | |
# Tokenize the chunk | |
prompt = tokenizer(chunk, return_tensors="pt").to(device) | |
# Generate audio for the chunk | |
generation = model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_input_ids=prompt.input_ids, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
return_dict_in_generate=True | |
) | |
# Extract audio from generation | |
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'): | |
audio = generation.sequences[0, :generation.audios_length[0]] | |
audio_np = audio.to(torch.float32).cpu().numpy().squeeze() | |
if len(audio_np.shape) > 1: | |
audio_np = audio_np.flatten() | |
all_audio.append(audio_np) | |
# Combine all audio chunks | |
combined_audio = np.concatenate(all_audio) | |
# Convert to expected format and yield | |
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds") | |
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate) | |
def generate_finetuned(text, description): | |
# Initialize variables | |
chunk_size = 25 # Process max 25 words or a sentence at a time | |
# Tokenize the full text and description | |
inputs = description_tokenizer(description, return_tensors="pt").to(device) | |
sentences_text = nltk.sent_tokenize(text) # this gives us a list of sentences | |
curr_sentence = "" | |
chunks = [] | |
for sentence in sentences_text: | |
candidate = " ".join([curr_sentence, sentence]) | |
if len(candidate.split()) >= chunk_size: | |
chunks.append(curr_sentence) | |
curr_sentence = sentence | |
else: | |
curr_sentence = candidate | |
if curr_sentence != "": | |
chunks.append(curr_sentence) | |
print(chunks) | |
all_audio = [] | |
# Process each chunk | |
for chunk in chunks: | |
# Tokenize the chunk | |
prompt = tokenizer(chunk, return_tensors="pt").to(device) | |
# Generate audio for the chunk | |
generation = finetuned_model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_input_ids=prompt.input_ids, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
return_dict_in_generate=True | |
) | |
# Extract audio from generation | |
if hasattr(generation, 'sequences') and hasattr(generation, 'audios_length'): | |
audio = generation.sequences[0, :generation.audios_length[0]] | |
audio_np = audio.to(torch.float32).cpu().numpy().squeeze() | |
if len(audio_np.shape) > 1: | |
audio_np = audio_np.flatten() | |
all_audio.append(audio_np) | |
# Combine all audio chunks | |
combined_audio = np.concatenate(all_audio) | |
# Convert to expected format and yield | |
print(f"Sample of length: {round(combined_audio.shape[0] / sampling_rate, 2)} seconds") | |
yield numpy_to_mp3(combined_audio, sampling_rate=sampling_rate) | |
css = """ | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
width: 13rem; | |
margin-top: 10px; | |
margin-left: auto; | |
flex: unset !important; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor: pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.25rem !important; | |
padding-bottom: 0.25rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset !important; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
""" | |
with gr.Blocks(css=css) as block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
Parler-TTS 🗣️ | |
</h1> | |
</div> | |
</div> | |
""" | |
) | |
gr.HTML( | |
f""" | |
<p><a href="https://github.com/huggingface/Parler-TTS">ParlerTTS</a> is a training and inference library for high-quality text-to-speech (TTS) models. This demonstration highlights the flexibility of the IndicParlerTTS model, which generates natural, expressive speech for over 22 Indian languages, using a simple text prompt to control features like speaker style, tone, pitch, pace, and more.</p> | |
<p>Tips for effective usage: | |
<ul> | |
<li>Use detailed captions to describe the speaker and desired characteristics (e.g., "Aditi speaks in a slightly expressive tone, with clear audio quality and a moderate pace.").</li> | |
<li>For best results, reference specific named speakers provided in the model card on the <a href="https://huggingface.co/ai4bharat/indic-parler-tts#%F0%9F%8E%AF-using-a-specific-speaker">model page</a>.</li> | |
<li>Include terms like <b>"very clear audio"</b> or <b>"slightly noisy audio"</b> to control the audio quality and background ambiance.</li> | |
<li>Punctuation can be used to shape prosody (e.g., commas add pauses for natural phrasing).</li> | |
<li>If unsure about what caption to use, you can start with: <b>"The speaker speaks naturally. The recording is very high quality with no background noise."</b></li> | |
</ul> | |
</p> | |
""" | |
) | |
with gr.Tab("Finetuned"): | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=2, value=finetuned_examples[0][0], elem_id="input_text") | |
description = gr.Textbox(label="Description", lines=2, value=finetuned_examples[0][1], elem_id="input_description") | |
run_button = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True) | |
inputs = [input_text, description] | |
outputs = [audio_out] | |
gr.Examples(examples=finetuned_examples, fn=generate_finetuned, inputs=inputs, outputs=outputs, cache_examples=False) | |
run_button.click(fn=generate_finetuned, inputs=inputs, outputs=outputs, queue=True) | |
with gr.Tab("Pretrained"): | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text") | |
description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description") | |
run_button = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="Parler-TTS generation", format="mp3", elem_id="audio_out", autoplay=True) | |
inputs = [input_text, description] | |
outputs = [audio_out] | |
gr.Examples(examples=examples, fn=generate_base, inputs=inputs, outputs=outputs, cache_examples=False) | |
run_button.click(fn=generate_base, inputs=inputs, outputs=outputs, queue=True) | |
gr.HTML( | |
""" | |
If you'd like to learn more about how the model was trained or explore fine-tuning it yourself, visit the <a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> repository on GitHub. The Parler-TTS codebase and associated checkpoints are licensed under the <a href="https://github.com/huggingface/parler-tts/blob/main/LICENSE">Apache 2.0 license</a>.</p> | |
""" | |
) | |
block.queue() | |
block.launch(share=True) | |