File size: 12,955 Bytes
1e09f14
c892f97
dc921fc
c892f97
dad191d
1e09f14
b9c1a41
c892f97
c811726
 
c892f97
 
 
c811726
c892f97
 
 
 
 
c811726
c892f97
2fecb4f
 
 
 
 
 
5698f53
 
 
 
 
 
 
 
c892f97
c811726
c892f97
 
 
c811726
c892f97
40ac692
c892f97
5c0ffc8
 
1e09f14
b9c1a41
 
 
 
 
 
c811726
 
 
b9c1a41
 
 
 
c811726
b9c1a41
 
c811726
b7433f5
d978cd5
 
 
 
c811726
 
 
b7308a9
1e09f14
 
 
4fe4cfe
1e09f14
 
d978cd5
 
5cd4921
 
 
 
 
 
d978cd5
b7308a9
1e09f14
5cd4921
1e09f14
5cd4921
c811726
 
 
5698f53
c811726
 
 
 
5698f53
 
 
 
 
 
 
dad191d
 
 
 
 
 
 
c811726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5698f53
dad191d
 
62980e4
d978cd5
 
 
5698f53
c892f97
c811726
 
1b657c1
62980e4
dd5a703
dad191d
ba5b7fa
 
c811726
5698f53
 
 
 
 
 
dad191d
 
5698f53
c892f97
dd5a703
c892f97
 
c811726
 
 
 
 
 
c892f97
 
 
c811726
 
 
c892f97
 
 
 
40ac692
c892f97
c811726
c892f97
40ac692
c892f97
1b657c1
c892f97
 
 
40ac692
c892f97
 
40ac692
c892f97
 
 
 
 
c811726
c892f97
c811726
c892f97
 
 
c811726
c892f97
c811726
c892f97
 
c811726
c892f97
 
 
c811726
 
 
c892f97
 
 
 
 
 
 
 
 
40ac692
c892f97
 
 
40ac692
c811726
 
c892f97
 
 
 
c811726
c892f97
 
 
 
c811726
c892f97
 
 
 
c811726
 
c892f97
 
 
 
 
 
 
 
40ac692
c811726
c892f97
 
c811726
c892f97
 
 
1b657c1
c811726
c892f97
 
 
c811726
c892f97
 
 
c811726
 
c892f97
 
 
 
 
1b657c1
8c7c97c
 
c536c53
2fecb4f
8c7c97c
 
 
c892f97
8c7c97c
2fecb4f
 
dad191d
c536c53
2fecb4f
8c7c97c
 
 
dad191d
2fecb4f
dad191d
5698f53
 
 
 
2759d32
5698f53
7594d9d
 
 
 
5698f53
 
 
 
b282311
5698f53
 
 
 
7594d9d
5698f53
c892f97
 
40ac692
c892f97
c811726
c892f97
40ac692
c892f97
 
c811726
c892f97
 
 
1b657c1
c811726
c892f97
 
 
c811726
c892f97
 
c811726
c892f97
 
 
 
1b657c1
c892f97
 
40ac692
c892f97
 
c811726
c892f97
 
 
c811726
 
c892f97
 
1b657c1
c811726
c892f97
 
 
c811726
c892f97
c811726
 
 
 
 
 
c892f97
 
 
 
1b657c1
c892f97
 
 
1b657c1
c892f97
 
 
 
 
40ac692
 
 
c892f97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from datetime import datetime, timedelta
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import duckdb
import logging
from tabs.trades import (
    prepare_trades,
    get_overall_trades,
    get_overall_winning_trades,
    plot_trades_by_week,
    plot_winning_trades_by_week,
    plot_trade_details,
)
from tabs.tool_win import (
    get_tool_winning_rate,
    get_overall_winning_rate,
    plot_tool_winnings_overall,
    plot_tool_winnings_by_tool,
)

from tabs.tool_accuracy import (
    compute_weighted_accuracy,
    plot_tools_accuracy_graph,
    plot_tools_weighted_accuracy_graph,
)

from tabs.invalid_markets import (
    plot_daily_dist_invalid_trades,
    plot_ratio_invalid_trades_per_market,
    plot_top_invalid_markets,
    plot_daily_nr_invalid_markets,
)

from tabs.error import (
    get_error_data,
    get_error_data_overall,
    plot_error_data,
    plot_tool_error_data,
    plot_week_error_data,
)
from tabs.about import about_olas_predict, about_this_dashboard

from scripts.utils import INC_TOOLS


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger


logger = get_logger()


def get_last_one_month_data():
    """
    Get the last one month data from the tools.parquet file
    """
    logger.info("Getting last one month data")
    con = duckdb.connect(":memory:")
    one_months_ago = (datetime.now() - timedelta(days=60)).strftime("%Y-%m-%d")

    # Query to fetch data from all_trades_profitability.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    WHERE creation_timestamp >= '{one_months_ago}'
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got last one month data from all_trades_profitability.parquet")

    query1 = f"""
    SELECT *
    FROM read_parquet('./data/tools.parquet')
    WHERE request_time >= '{one_months_ago}'
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got last one month data from tools.parquet")

    con.close()

    return df1, df2


def get_all_data():
    """
    Get all data from the tools.parquet, tools_accuracy and trades parquet files
    """
    logger.info("Getting all data")
    con = duckdb.connect(":memory:")

    # Query to fetch invalid trades data
    query4 = f"""
    SELECT *
    FROM read_parquet('./data/invalid_trades.parquet')
    """
    df4 = con.execute(query4).fetchdf()

    # Query to fetch tools accuracy data
    query3 = f"""
    SELECT *
    FROM read_csv('./data/tools_accuracy.csv')
    """
    df3 = con.execute(query3).fetchdf()

    # Query to fetch data from all_trades_profitability.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got all data from all_trades_profitability.parquet")

    query1 = f"""
    SELECT *
    FROM read_parquet('./data/tools.parquet')
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got all data from tools.parquet")

    con.close()

    return df1, df2, df3, df4


def prepare_data():
    """
    Prepare the data for the dashboard
    """
    tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()

    tools_df["request_time"] = pd.to_datetime(tools_df["request_time"])
    trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])

    trades_df = prepare_trades(trades_df)

    tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
    print("weighted accuracy info")
    print(tools_accuracy_info.head())

    invalid_trades["creation_timestamp"] = pd.to_datetime(
        invalid_trades["creation_timestamp"]
    )
    invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date

    return tools_df, trades_df, tools_accuracy_info, invalid_trades


tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()


demo = gr.Blocks()

error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
error_overall_df = get_error_data_overall(error_df=error_df)
winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS)
winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df)
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)

with demo:
    gr.HTML("<h1>Olas Predict Actual Performance</h1>")
    gr.Markdown(
        "This app shows the actual performance of Olas Predict tools on the live market."
    )

    with gr.Tabs():
        with gr.TabItem("🔥Trades Dashboard"):
            with gr.Row():
                gr.Markdown("# Number of trades per week")
            with gr.Row():
                trades_by_week_plot = plot_trades_by_week(trades_df=trades_count_df)
            with gr.Row():
                gr.Markdown("# Percentage of winning trades per week")
            with gr.Row():
                winning_trades_by_week_plot = plot_winning_trades_by_week(
                    trades_df=trades_winning_rate_df
                )
            with gr.Row():
                gr.Markdown("# Trading metrics")
            with gr.Row():
                trade_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=[
                        "mech calls",
                        "collateral amount",
                        "earnings",
                        "net earnings",
                        "ROI",
                    ],
                    value="mech calls",
                )
            with gr.Row():
                trade_details_plot = plot_trade_details(
                    trade_detail="mech calls", trades_df=trades_df
                )

            def update_trade_details(trade_detail):
                return plot_trade_details(
                    trade_detail=trade_detail, trades_df=trades_df
                )

            trade_details_selector.change(
                update_trade_details,
                inputs=trade_details_selector,
                outputs=trade_details_plot,
            )

            with gr.Row():
                trade_details_selector
            with gr.Row():
                trade_details_plot

        with gr.TabItem("🚀 Tool Winning Dashboard"):
            with gr.Row():
                gr.Markdown("# All tools winning performance")

            with gr.Row():
                winning_selector = gr.Dropdown(
                    label="Select the tool metric",
                    choices=["losses", "wins", "total_request", "win_perc"],
                    value="win_perc",
                )

            with gr.Row():
                winning_plot = plot_tool_winnings_overall(
                    wins_df=winning_rate_overall_df, winning_selector="win_perc"
                )

            def update_tool_winnings_overall_plot(winning_selector):
                return plot_tool_winnings_overall(
                    wins_df=winning_rate_overall_df, winning_selector=winning_selector
                )

            winning_selector.change(
                update_tool_winnings_overall_plot,
                inputs=winning_selector,
                outputs=winning_plot,
            )

            with gr.Row():
                winning_selector
            with gr.Row():
                winning_plot

            with gr.Row():
                gr.Markdown("# Winning performance by each tool")

            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
                    wins_df=winning_rate_df, tool=INC_TOOLS[0]
                )

            def update_tool_winnings_by_tool_plot(tool):
                return plot_tool_winnings_by_tool(wins_df=winning_rate_df, tool=tool)

            sel_tool.change(
                update_tool_winnings_by_tool_plot,
                inputs=sel_tool,
                outputs=tool_winnings_by_tool_plot,
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_winnings_by_tool_plot
        with gr.TabItem("🎯 Tool Accuracy Dashboard"):
            with gr.Row():
                gr.Markdown("# Tools accuracy ranking")
            with gr.Row():
                gr.Markdown(
                    "The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
                )

            with gr.Row():
                plot_tools_accuracy_graph(tools_accuracy_info)

            with gr.Row():
                gr.Markdown("# Weighted accuracy ranking per tool")
            with gr.Row():
                gr.Markdown(
                    "The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool"
                )
            with gr.Row():
                plot_tools_weighted_accuracy_graph(tools_accuracy_info)

        with gr.TabItem("⛔ Invalid Markets Dashboard"):
            with gr.Row():
                gr.Markdown("# Daily distribution of invalid trades")
            with gr.Row():
                daily_trades = plot_daily_dist_invalid_trades(invalid_trades)

            # with gr.Row():
            #     gr.Markdown("# Ratio of invalid trades per market")
            # with gr.Row():
            #     plot_ratio_invalid_trades_per_market(invalid_trades)

            with gr.Row():
                gr.Markdown("# Top markets with invalid trades")
            with gr.Row():
                top_invalid_markets = plot_top_invalid_markets(invalid_trades)

            with gr.Row():
                gr.Markdown("# Daily distribution of invalid markets")
            with gr.Row():
                invalid_markets = plot_daily_nr_invalid_markets(invalid_trades)

        with gr.TabItem("🏥 Tool Error Dashboard"):
            with gr.Row():
                gr.Markdown("# All tools errors")
            with gr.Row():
                error_overall_plot = plot_error_data(error_all_df=error_overall_df)
            with gr.Row():
                gr.Markdown("# Error percentage per tool")
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_error_plot = plot_tool_error_data(
                    error_df=error_df, tool=INC_TOOLS[0]
                )

            def update_tool_error_plot(tool):
                return plot_tool_error_data(error_df=error_df, tool=tool)

            sel_tool.change(
                update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
            )
            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot

            with gr.Row():
                gr.Markdown("# Tools distribution of errors per week")

            with gr.Row():
                choices = error_overall_df["request_month_year_week"].unique().tolist()
                # sort the choices by the latest week to be on the top
                choices = sorted(choices)
                sel_week = gr.Dropdown(
                    label="Select a week", choices=choices, value=choices[-1]
                )

            with gr.Row():
                week_error_plot = plot_week_error_data(
                    error_df=error_df, week=choices[-1]
                )

            def update_week_error_plot(selected_week):
                return plot_week_error_data(error_df=error_df, week=selected_week)

            sel_tool.change(
                update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
            )
            sel_week.change(
                update_week_error_plot, inputs=sel_week, outputs=week_error_plot
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot
            with gr.Row():
                sel_week
            with gr.Row():
                week_error_plot

        with gr.TabItem("ℹ️ About"):
            with gr.Accordion("About Olas Predict"):
                gr.Markdown(about_olas_predict)

            with gr.Accordion("About this dashboard"):
                gr.Markdown(about_this_dashboard)

demo.queue(default_concurrency_limit=40).launch()