Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import onnx | |
from onnx import numpy_helper | |
from insightface import model_zoo | |
from insightface.utils import face_align | |
from .base_swapper import BaseSwapper | |
from dofaker.utils import download_file, get_model_url | |
class InSwapper(BaseSwapper): | |
def __init__(self, name='inswapper', root='weights/models'): | |
_, model_file = download_file(get_model_url(name), | |
save_dir=root, | |
overwrite=False) | |
providers = model_zoo.model_zoo.get_default_providers() | |
self.session = model_zoo.model_zoo.PickableInferenceSession( | |
model_file, providers=providers) | |
model = onnx.load(model_file) | |
graph = model.graph | |
self.emap = numpy_helper.to_array(graph.initializer[-1]) | |
self.input_mean = 0.0 | |
self.input_std = 255.0 | |
inputs = self.session.get_inputs() | |
self.input_names = [] | |
for inp in inputs: | |
self.input_names.append(inp.name) | |
outputs = self.session.get_outputs() | |
output_names = [] | |
for out in outputs: | |
output_names.append(out.name) | |
self.output_names = output_names | |
assert len( | |
self.output_names | |
) == 1, "The output number of inswapper model should be 1, but got {}, please check your model.".format( | |
len(self.output_names)) | |
output_shape = outputs[0].shape | |
input_cfg = inputs[0] | |
input_shape = input_cfg.shape | |
self.input_shape = input_shape | |
print('inswapper-shape:', self.input_shape) | |
self.input_size = tuple(input_shape[2:4][::-1]) | |
def forward(self, img, latent): | |
img = (img - self.input_mean) / self.input_std | |
pred = self.session.run(self.output_names, { | |
self.input_names[0]: img, | |
self.input_names[1]: latent | |
})[0] | |
return pred | |
def get(self, img, target_face, source_face, paste_back=True): | |
aimg, M = face_align.norm_crop2(img, target_face.kps, | |
self.input_size[0]) | |
blob = cv2.dnn.blobFromImage( | |
aimg, | |
1.0 / self.input_std, | |
self.input_size, | |
(self.input_mean, self.input_mean, self.input_mean), | |
swapRB=True) | |
latent = source_face.normed_embedding.reshape((1, -1)) | |
latent = np.dot(latent, self.emap) | |
latent /= np.linalg.norm(latent) | |
pred = self.session.run(self.output_names, { | |
self.input_names[0]: blob, | |
self.input_names[1]: latent | |
})[0] | |
img_fake = pred.transpose((0, 2, 3, 1))[0] | |
bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:, :, ::-1] | |
if not paste_back: | |
return bgr_fake, M | |
else: | |
target_img = img | |
fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32) | |
fake_diff = np.abs(fake_diff).mean(axis=2) | |
fake_diff[:2, :] = 0 | |
fake_diff[-2:, :] = 0 | |
fake_diff[:, :2] = 0 | |
fake_diff[:, -2:] = 0 | |
IM = cv2.invertAffineTransform(M) | |
img_white = np.full((aimg.shape[0], aimg.shape[1]), | |
255, | |
dtype=np.float32) | |
bgr_fake = cv2.warpAffine( | |
bgr_fake, | |
IM, (target_img.shape[1], target_img.shape[0]), | |
borderValue=0.0) | |
img_white = cv2.warpAffine( | |
img_white, | |
IM, (target_img.shape[1], target_img.shape[0]), | |
borderValue=0.0) | |
fake_diff = cv2.warpAffine( | |
fake_diff, | |
IM, (target_img.shape[1], target_img.shape[0]), | |
borderValue=0.0) | |
img_white[img_white > 20] = 255 | |
fthresh = 10 | |
fake_diff[fake_diff < fthresh] = 0 | |
fake_diff[fake_diff >= fthresh] = 255 | |
img_mask = img_white | |
mask_h_inds, mask_w_inds = np.where(img_mask == 255) | |
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) | |
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) | |
mask_size = int(np.sqrt(mask_h * mask_w)) | |
k = max(mask_size // 10, 10) | |
#k = max(mask_size//20, 6) | |
#k = 6 | |
kernel = np.ones((k, k), np.uint8) | |
img_mask = cv2.erode(img_mask, kernel, iterations=1) | |
kernel = np.ones((2, 2), np.uint8) | |
fake_diff = cv2.dilate(fake_diff, kernel, iterations=1) | |
k = max(mask_size // 20, 5) | |
#k = 3 | |
#k = 3 | |
kernel_size = (k, k) | |
blur_size = tuple(2 * i + 1 for i in kernel_size) | |
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) | |
k = 5 | |
kernel_size = (k, k) | |
blur_size = tuple(2 * i + 1 for i in kernel_size) | |
fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0) | |
img_mask /= 255 | |
fake_diff /= 255 | |
#img_mask = fake_diff | |
img_mask = np.reshape(img_mask, | |
[img_mask.shape[0], img_mask.shape[1], 1]) | |
fake_merged = img_mask * bgr_fake + ( | |
1 - img_mask) * target_img.astype(np.float32) | |
fake_merged = fake_merged.astype(np.uint8) | |
return fake_merged | |