Spaces:
Runtime error
Runtime error
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
import cv2 | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
from IPython.display import display | |
from tqdm.notebook import tqdm | |
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)): | |
h, w, c = image.shape | |
offset = int(h * .2) | |
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
img[:h] = image | |
textsize = cv2.getTextSize(text, font, 1, 2)[0] | |
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2 | |
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2) | |
return img | |
def view_images(images, num_rows=1, offset_ratio=0.02): | |
if type(images) is list: | |
num_empty = len(images) % num_rows | |
elif images.ndim == 4: | |
num_empty = images.shape[0] % num_rows | |
else: | |
images = [images] | |
num_empty = 0 | |
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 | |
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty | |
num_items = len(images) | |
h, w, c = images[0].shape | |
offset = int(h * offset_ratio) | |
num_cols = num_items // num_rows | |
image_ = np.ones((h * num_rows + offset * (num_rows - 1), | |
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255 | |
for i in range(num_rows): | |
for j in range(num_cols): | |
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[ | |
i * num_cols + j] | |
pil_img = Image.fromarray(image_) | |
display(pil_img) | |
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False, simple=False): | |
if low_resource: | |
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"] | |
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"] | |
else: | |
latents_input = torch.cat([latents] * 2) | |
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"] | |
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) | |
if simple: | |
noise_pred[0] = noise_prediction_text[0] | |
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"] | |
# first latents: torch.Size([1, 4, 4, 64, 64]) | |
latents = controller.step_callback(latents) | |
return latents | |
def latent2image(vae, latents): | |
latents = 1 / 0.18215 * latents | |
image = vae.decode(latents)['sample'] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
image = (image * 255).astype(np.uint8) | |
return image | |
def latent2image_video(vae, latents): | |
latents = 1 / 0.18215 * latents | |
latents = latents[0].permute(1, 0, 2, 3) | |
image = vae.decode(latents)['sample'] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
image = (image * 255).astype(np.uint8) | |
return image | |
def init_latent(latent, model, height, width, generator, batch_size): | |
if latent is None: | |
latent = torch.randn( | |
(1, model.unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device) | |
return latent, latents | |
def text2image_ldm( | |
model, | |
prompt: List[str], | |
controller, | |
num_inference_steps: int = 50, | |
guidance_scale: Optional[float] = 7., | |
generator: Optional[torch.Generator] = None, | |
latent: Optional[torch.FloatTensor] = None, | |
): | |
register_attention_control(model, controller) | |
height = width = 256 | |
batch_size = len(prompt) | |
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt") | |
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0] | |
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt") | |
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0] | |
latent, latents = init_latent(latent, model, height, width, generator, batch_size) | |
context = torch.cat([uncond_embeddings, text_embeddings]) | |
model.scheduler.set_timesteps(num_inference_steps) | |
for t in tqdm(model.scheduler.timesteps): | |
latents = diffusion_step(model, controller, latents, context, t, guidance_scale) | |
image = latent2image(model.vqvae, latents) | |
return image, latent | |
def text2image_ldm_stable( | |
model, | |
prompt: List[str], | |
controller, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
generator: Optional[torch.Generator] = None, | |
latent: Optional[torch.FloatTensor] = None, | |
low_resource: bool = False, | |
): | |
register_attention_control(model, controller) | |
height = width = 512 | |
batch_size = len(prompt) | |
text_input = model.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=model.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0] | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = model.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0] | |
context = [uncond_embeddings, text_embeddings] | |
if not low_resource: | |
context = torch.cat(context) | |
latent, latents = init_latent(latent, model, height, width, generator, batch_size) | |
# set timesteps | |
extra_set_kwargs = {"offset": 1} | |
model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
for t in tqdm(model.scheduler.timesteps): | |
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource) | |
image = latent2image(model.vae, latents) | |
return image, latent | |
def register_attention_control(model, controller): | |
def ca_forward(self, place_in_unet): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(x, encoder_hidden_states=None, attention_mask=None): | |
context = encoder_hidden_states | |
mask = attention_mask | |
batch_size, sequence_length, dim = x.shape | |
h = self.heads | |
q = self.to_q(x) | |
is_cross = context is not None | |
context = context if is_cross else x | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q = self.reshape_heads_to_batch_dim(q) | |
k = self.reshape_heads_to_batch_dim(k) | |
v = self.reshape_heads_to_batch_dim(v) | |
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale # q: torch.Size([128, 4096, 40]); k: torch.Size([64, 77, 40]) | |
if mask is not None: | |
mask = mask.reshape(batch_size, -1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~mask, max_neg_value) | |
attn = torch.exp(sim-torch.max(sim)) / torch.sum(torch.exp(sim-torch.max(sim)), axis=-1).unsqueeze(-1) | |
attn = controller(attn, is_cross, place_in_unet) | |
out = torch.einsum("b i j, b j d -> b i d", attn, v) | |
out = self.reshape_batch_dim_to_heads(out) | |
return to_out(out) | |
return forward | |
class DummyController: | |
def __call__(self, *args): | |
return args[0] | |
def __init__(self): | |
self.num_att_layers = 0 | |
if controller is None: | |
controller = DummyController() | |
def register_recr(net_, count, place_in_unet): | |
if net_.__class__.__name__ == 'CrossAttention': | |
net_.forward = ca_forward(net_, place_in_unet) | |
return count + 1 | |
elif hasattr(net_, 'children'): | |
for net__ in net_.children(): | |
count = register_recr(net__, count, place_in_unet) | |
return count | |
cross_att_count = 0 | |
sub_nets = model.unet.named_children() | |
for net in sub_nets: | |
if "down" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "down") | |
elif "up" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "up") | |
elif "mid" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "mid") | |
controller.num_att_layers = cross_att_count | |
def get_word_inds(text: str, word_place: int, tokenizer): | |
split_text = text.split(" ") | |
if type(word_place) is str: | |
word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
elif type(word_place) is int: | |
word_place = [word_place] | |
out = [] | |
if len(word_place) > 0: | |
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
cur_len, ptr = 0, 0 | |
for i in range(len(words_encode)): | |
cur_len += len(words_encode[i]) | |
if ptr in word_place: | |
out.append(i + 1) | |
if cur_len >= len(split_text[ptr]): | |
ptr += 1 | |
cur_len = 0 | |
return np.array(out) | |
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, | |
word_inds: Optional[torch.Tensor]=None): | |
if type(bounds) is float: | |
bounds = 0, bounds | |
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
if word_inds is None: | |
word_inds = torch.arange(alpha.shape[2]) | |
alpha[: start, prompt_ind, word_inds] = 0 | |
alpha[start: end, prompt_ind, word_inds] = 1 | |
alpha[end:, prompt_ind, word_inds] = 0 | |
return alpha | |
def get_time_words_attention_alpha(prompts, num_steps, | |
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], | |
tokenizer, max_num_words=77): | |
if type(cross_replace_steps) is not dict: | |
cross_replace_steps = {"default_": cross_replace_steps} | |
if "default_" not in cross_replace_steps: | |
cross_replace_steps["default_"] = (0., 1.) | |
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
for i in range(len(prompts) - 1): # 2 | |
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], # {'default_': 0.8} | |
i) | |
for key, item in cross_replace_steps.items(): | |
if key != "default_": | |
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
for i, ind in enumerate(inds): | |
if len(ind) > 0: | |
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) | |
return alpha_time_words | |