eliAI_demo / utils.py
zurd46's picture
Create utils.py
987aabd verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
from peft import PeftModel
def get_device_map():
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
print("More than one GPU found. Setting device_map to use CUDA device 0.")
return 'cuda:0'
else:
return 'auto'
def check_adapter_path(adapters_name):
"""
Checks if the adapter path is correctly set and not a placeholder.
Args:
adapters_name (str): The file path for the adapters.
Raises:
ValueError: If the adapters_name contains placeholder characters.
"""
if '<' in adapters_name or '>' in adapters_name:
raise ValueError("The adapter path has not been set correctly.")
def load_tokenizer(model_name):
"""
Loads and returns a tokenizer for the specified model.
Args:
model_name (str): The name of the model for which to load the tokenizer.
Returns:
AutoTokenizer: The loaded tokenizer with special tokens added and padding side set.
"""
tok = AutoTokenizer.from_pretrained(model_name, device_map=get_device_map(), trust_remote_code=True)
tok.add_special_tokens({'pad_token': '[PAD]'})
tok.padding_side = 'right' # TRL requires right padding
return tok
def load_model(model_name, torch_dtype, quant_type):
"""
Loads and returns a model with the specified quantization configuration.
If more than one GPU is available, wraps the model with DataParallel.
Args:
model_name (str): The name of the model to load.
torch_dtype (torch.dtype): The data type for model weights (e.g., torch.float16).
quant_type (str): The quantization type to use.
Returns:
AutoModelForCausalLM: The loaded model possibly wrapped with DataParallel.
"""
try:
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_name,
trust_remote_code=True,
device_map=get_device_map(),
torch_dtype=torch_dtype,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=quant_type
),
)
return model
except Exception as e:
raise RuntimeError(f"Error loading model: {e}")
def resize_embeddings(model, tokenizer):
"""
Resizes the token embeddings in the model to account for new tokens.
Args:
model (AutoModelForCausalLM): The model whose token embeddings will be resized.
tokenizer (AutoTokenizer): The tokenizer corresponding to the model.
"""
model.resize_token_embeddings(len(tokenizer))
def load_peft_model(model, adapters_name):
"""
Loads the PEFT model from the pretrained model and specified adapters.
Args:
model (AutoModelForCausalLM): The base model.
adapters_name (str): Path to the adapters file.
Returns:
PeftModel: The PEFT model with the loaded adapters.
"""
return PeftModel.from_pretrained(model, adapters_name)
def get_device():
"""
Determines and returns the device to use for computations.
If CUDA is available, returns a CUDA device, otherwise returns a CPU device.
Prints the number of GPUs available if CUDA is used.
Returns:
torch.device: The device to use.
"""
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Number of GPUs available: {torch.cuda.device_count()}")
else:
device = torch.device("cpu")
return device
def run_prompt(model, tokenizer, device, template):
"""
Runs an interactive prompt where the user can enter text to get generated responses.
Continues to prompt the user for input until '#end' is entered.
Args:
model (AutoModelForCausalLM): The model to use for text generation.
tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text.
device (torch.device): The device on which to perform the computation.
template (str): The template string to format the input text.
"""
while True:
new_input = input("Enter your text (type #end to stop): ")
if new_input == "#end":
break
try:
_ = generate_text(model, tokenizer, device, new_input, template)
except Exception as e:
print(f"An error occurred during text generation: {e}")
def generate_text(model, tokenizer, device, input_text, template):
"""
Generates and returns text using the provided model and tokenizer for the input text.
Args:
model (AutoModelForCausalLM): The model to use for text generation.
tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text.
device (torch.device): The device on which to perform the computation.
input_text (str): The input text to generate responses for.
template (str): The template string to format the input text.
Returns:
torch.Tensor: The generated text tensor.
"""
inputs = tokenizer(template.format(input_text), return_tensors="pt")
inputs = inputs.to(device) # Move input tensors to the device
streamer = TextStreamer(tokenizer)
return model.generate(**inputs, streamer=streamer,
max_new_tokens=1024,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id)
def get_last_folder_alphabetically(directory_path):
"""
Finds the last folder alphabetically in a specified directory.
Args:
directory_path (str): The path to the directory.
Returns:
str: The path to the last folder found alphabetically.
If the directory does not exist or contains no folders, a descriptive string is returned.
"""
if not os.path.exists(directory_path):
return "Directory does not exist."
all_files_and_folders = os.listdir(directory_path)
only_folders = [f for f in all_files_and_folders if os.path.isdir(os.path.join(directory_path, f))]
if not only_folders:
return "No folders found in the directory."
only_folders.sort(key=natural_sort_key)
last_folder = only_folders[-1]
return os.path.join(directory_path, last_folder)
def natural_sort_key(s):
"""
Generates a key for sorting strings that contain numbers where the numbers should be sorted numerically,
and the rest alphabetically.
Args:
s (str): The string to be sorted.
Returns:
list: A list of strings and integers derived from the input string.
"""
return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]