Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
from abc import ABC | |
import pandas as pd | |
from api.db import LLMType | |
from api.db.services.knowledgebase_service import KnowledgebaseService | |
from api.db.services.llm_service import LLMBundle | |
from api.settings import retrievaler | |
from agent.component.base import ComponentBase, ComponentParamBase | |
class RetrievalParam(ComponentParamBase): | |
""" | |
Define the Retrieval component parameters. | |
""" | |
def __init__(self): | |
super().__init__() | |
self.similarity_threshold = 0.2 | |
self.keywords_similarity_weight = 0.5 | |
self.top_n = 8 | |
self.top_k = 1024 | |
self.kb_ids = [] | |
self.rerank_id = "" | |
self.empty_response = "" | |
def check(self): | |
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold") | |
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight") | |
self.check_positive_number(self.top_n, "[Retrieval] Top N") | |
self.check_empty(self.kb_ids, "[Retrieval] Knowledge bases") | |
class Retrieval(ComponentBase, ABC): | |
component_name = "Retrieval" | |
def _run(self, history, **kwargs): | |
query = [] | |
for role, cnt in history[::-1][:self._param.message_history_window_size]: | |
if role != "user":continue | |
query.append(cnt) | |
query = "\n".join(query) | |
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids) | |
if not kbs: | |
raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids)) | |
embd_nms = list(set([kb.embd_id for kb in kbs])) | |
assert len(embd_nms) == 1, "Knowledge bases use different embedding models." | |
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0]) | |
self._canvas.set_embedding_model(embd_nms[0]) | |
rerank_mdl = None | |
if self._param.rerank_id: | |
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id) | |
kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids, | |
1, self._param.top_n, | |
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight, | |
aggs=False, rerank_mdl=rerank_mdl) | |
if not kbinfos["chunks"]: | |
df = Retrieval.be_output(self._param.empty_response) | |
df["empty_response"] = True | |
return df | |
df = pd.DataFrame(kbinfos["chunks"]) | |
df["content"] = df["content_with_weight"] | |
del df["content_with_weight"] | |
print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df) | |
return df | |