Stable Code
Collection
Suite of developer assistant models
β’
5 items
β’
Updated
β’
40
Try it out here: https://huggingface.co/spaces/stabilityai/stable-code-instruct-3b
stable-code-instruct-3b
is a 2.7B billion parameter decoder-only language model tuned from stable-code-3b
. This model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO).
This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using BigCode's Evaluation Harness, and on the code portions of MT Bench. The model is finetuned to make it useable in tasks like,
Please note: For commercial use, please refer to https://stability.ai/license.
Here's how you can run the model use the model:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.eval()
model = model.cuda()
messages = [
{
"role": "system",
"content": "You are a helpful and polite assistant",
},
{
"role": "user",
"content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."
},
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=1024,
temperature=0.5,
top_p=0.95,
top_k=100,
do_sample=True,
use_cache=True
)
output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
Stable Code Instruct 3B
model is an auto-regressive language model based on the transformer decoder architecture.lm@stability.ai
Model | Size | Avg | Python | C++ | JavaScript | Java | PHP | Rust |
---|---|---|---|---|---|---|---|---|
Codellama Instruct | 7B | 0.30 | 0.33 | 0.31 | 0.31 | 0.29 | 0.31 | 0.25 |
Deepseek Instruct | 1.3B | 0.44 | 0.52 | 0.52 | 0.41 | 0.46 | 0.45 | 0.28 |
Stable Code Instruct (SFT) | 3B | 0.44 | 0.55 | 0.45 | 0.42 | 0.42 | 0.44 | 0.32 |
Stable Code Instruct (DPO) | 3B | 0.47 | 0.59 | 0.49 | 0.49 | 0.44 | 0.45 | 0.37 |
Model | Size | Score |
---|---|---|
DeepSeek Coder | 1.3B | 4.6 |
Stable Code Instruct (DPO) | 3B | 5.8(ours) |
Stable Code Instruct (SFT) | 3B | 5.5 |
DeepSeek Coder | 6.7B | 6.9 |
CodeLlama Instruct | 7B | 3.55 |
StarChat2 | 15B | 5.7 |
Model | Size | Date | Group By | Order By | Ratio | Join | Where |
---|---|---|---|---|---|---|---|
Stable Code Instruct (DPO) | 3B | 24.0% | 54.2% | 68.5% | 40.0% | 54.2% | 42.8% |
DeepSeek-Coder Instruct | 1.3B | 24.0% | 37.1% | 51.4% | 34.3% | 45.7% | 45.7% |
SQLCoder | 7B | 64.0% | 82.9% | 74.3% | 54.3% | 74.3% | 74.3% |
@misc{stable-code-instruct-3b,
url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-instruct-3b)},
title={Stable Code 3B},
author={Phung, Duy, and Pinnaparaju, Nikhil and Adithyan, Reshinth and Zhuravinskyi, Maksym and Tow, Jonathan and Cooper, Nathan}
}