stulcrad's picture
Model save
dbd2428 verified
metadata
license: cc-by-nc-sa-4.0
base_model: ufal/robeczech-base
tags:
  - generated_from_trainer
datasets:
  - cnec
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: CNEC_2_0_ext_robeczech-base
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cnec
          type: cnec
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8633093525179856
          - name: Recall
            type: recall
            value: 0.8933002481389578
          - name: F1
            type: f1
            value: 0.8780487804878048
          - name: Accuracy
            type: accuracy
            value: 0.9703429462197973

CNEC_2_0_ext_robeczech-base

This model is a fine-tuned version of ufal/robeczech-base on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1663
  • Precision: 0.8633
  • Recall: 0.8933
  • F1: 0.8780
  • Accuracy: 0.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2593 4.46 1000 0.1653 0.8195 0.8223 0.8209 0.9593
0.1209 8.93 2000 0.1355 0.8441 0.8789 0.8612 0.9679
0.0763 13.39 3000 0.1310 0.8591 0.8893 0.8739 0.9709
0.0539 17.86 4000 0.1383 0.8656 0.8953 0.8802 0.9719
0.0403 22.32 5000 0.1392 0.8626 0.8943 0.8782 0.9710
0.0316 26.79 6000 0.1539 0.8606 0.8948 0.8774 0.9712
0.0254 31.25 7000 0.1552 0.8660 0.8913 0.8785 0.9706
0.0211 35.71 8000 0.1621 0.8658 0.8968 0.8810 0.9701
0.0183 40.18 9000 0.1593 0.8688 0.8973 0.8828 0.9718
0.0161 44.64 10000 0.1638 0.8653 0.8993 0.8820 0.9714
0.015 49.11 11000 0.1663 0.8633 0.8933 0.8780 0.9703

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0