from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("svjack/T5-dialogue-collect-v5")

model = AutoModelForSeq2SeqLM.from_pretrained("svjack/T5-dialogue-collect-v5")

text =  '''
    根据下面的上下文进行分段:
    上下文 他 喜欢 吃 汉堡 是 但 我 可 不 喜欢。
    答案:
'''

tokenizer.decode(
model.generate(
    tokenizer.encode(
            text, return_tensors="pt", add_special_tokens=True
        ))[0],
skip_special_tokens = True
)

'''
'分段:他喜欢吃汉堡 分段:是的,但我可不喜欢。'
'''
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using svjack/T5-dialogue-collect-v5 3