|
<p align="center"> |
|
<img src="./assets/a%20lovely%20cat.png" width="256x"> |
|
</p> |
|
|
|
# stable-diffusion.cpp |
|
|
|
Inference of [Stable Diffusion](https://github.com/CompVis/stable-diffusion) in pure C/C++ |
|
|
|
## Features |
|
|
|
- Plain C/C++ implementation based on [ggml](https://github.com/ggerganov/ggml), working in the same way as [llama.cpp](https://github.com/ggerganov/llama.cpp) |
|
- 16-bit, 32-bit float support |
|
- 4-bit, 5-bit and 8-bit integer quantization support |
|
- Accelerated memory-efficient CPU inference |
|
- Only requires ~2.3GB when using txt2img with fp16 precision to generate a 512x512 image |
|
- AVX, AVX2 and AVX512 support for x86 architectures |
|
- SD1.x and SD2.x support |
|
- Original `txt2img` and `img2img` mode |
|
- Negative prompt |
|
- [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) style tokenizer (not all the features, only token weighting for now) |
|
- Sampling method |
|
- `Euler A` |
|
- `Euler` |
|
- `Heun` |
|
- `DPM2` |
|
- `DPM++ 2M` |
|
- [`DPM++ 2M v2`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457) |
|
- `DPM++ 2S a` |
|
- Cross-platform reproducibility (`--rng cuda`, consistent with the `stable-diffusion-webui GPU RNG`) |
|
- Embedds generation parameters into png output as webui-compatible text string |
|
- Supported platforms |
|
- Linux |
|
- Mac OS |
|
- Windows |
|
- Android (via Termux) |
|
|
|
### TODO |
|
|
|
- [ ] More sampling methods |
|
- [ ] GPU support |
|
- [ ] Make inference faster |
|
- The current implementation of ggml_conv_2d is slow and has high memory usage |
|
- [ ] Continuing to reduce memory usage (quantizing the weights of ggml_conv_2d) |
|
- [ ] LoRA support |
|
- [ ] k-quants support |
|
|
|
## Usage |
|
|
|
### Get the Code |
|
|
|
``` |
|
git clone --recursive https://github.com/leejet/stable-diffusion.cpp |
|
cd stable-diffusion.cpp |
|
``` |
|
|
|
- If you have already cloned the repository, you can use the following command to update the repository to the latest code. |
|
|
|
``` |
|
cd stable-diffusion.cpp |
|
git pull origin master |
|
git submodule init |
|
git submodule update |
|
``` |
|
|
|
### Convert weights |
|
|
|
- download original weights(.ckpt or .safetensors). For example |
|
- Stable Diffusion v1.4 from https://huggingface.co/CompVis/stable-diffusion-v-1-4-original |
|
- Stable Diffusion v1.5 from https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|
- Stable Diffuison v2.1 from https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|
|
|
```shell |
|
curl -L -O https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt |
|
# curl -L -O https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors |
|
# curl -L -O https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-nonema-pruned.safetensors |
|
``` |
|
|
|
- convert weights to ggml model format |
|
|
|
```shell |
|
cd models |
|
pip install -r requirements.txt |
|
python convert.py [path to weights] --out_type [output precision] |
|
# For example, python convert.py sd-v1-4.ckpt --out_type f16 |
|
``` |
|
|
|
### Quantization |
|
|
|
You can specify the output model format using the --out_type parameter |
|
|
|
- `f16` for 16-bit floating-point |
|
- `f32` for 32-bit floating-point |
|
- `q8_0` for 8-bit integer quantization |
|
- `q5_0` or `q5_1` for 5-bit integer quantization |
|
- `q4_0` or `q4_1` for 4-bit integer quantization |
|
|
|
### Build |
|
|
|
#### Build from scratch |
|
|
|
```shell |
|
mkdir build |
|
cd build |
|
cmake .. |
|
cmake --build . --config Release |
|
``` |
|
|
|
##### Using OpenBLAS |
|
|
|
``` |
|
cmake .. -DGGML_OPENBLAS=ON |
|
cmake --build . --config Release |
|
``` |
|
|
|
### Run |
|
|
|
``` |
|
usage: ./bin/sd [arguments] |
|
|
|
arguments: |
|
-h, --help show this help message and exit |
|
-M, --mode [txt2img or img2img] generation mode (default: txt2img) |
|
-t, --threads N number of threads to use during computation (default: -1). |
|
If threads <= 0, then threads will be set to the number of CPU physical cores |
|
-m, --model [MODEL] path to model |
|
-i, --init-img [IMAGE] path to the input image, required by img2img |
|
-o, --output OUTPUT path to write result image to (default: .\output.png) |
|
-p, --prompt [PROMPT] the prompt to render |
|
-n, --negative-prompt PROMPT the negative prompt (default: "") |
|
--cfg-scale SCALE unconditional guidance scale: (default: 7.0) |
|
--strength STRENGTH strength for noising/unnoising (default: 0.75) |
|
1.0 corresponds to full destruction of information in init image |
|
-H, --height H image height, in pixel space (default: 512) |
|
-W, --width W image width, in pixel space (default: 512) |
|
--sampling-method {euler, euler_a, heun, dpm++2m, dpm++2mv2} |
|
sampling method (default: "euler_a") |
|
--steps STEPS number of sample steps (default: 20) |
|
--rng {std_default, cuda} RNG (default: cuda) |
|
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0) |
|
-v, --verbose print extra info |
|
``` |
|
|
|
#### txt2img example |
|
|
|
``` |
|
./bin/sd -m ../models/sd-v1-4-ggml-model-f16.bin -p "a lovely cat" |
|
``` |
|
|
|
Using formats of different precisions will yield results of varying quality. |
|
|
|
| f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 | |
|
| ---- |---- |---- |---- |---- |---- |---- | |
|
| ![](./assets/f32.png) |![](./assets/f16.png) |![](./assets/q8_0.png) |![](./assets/q5_0.png) |![](./assets/q5_1.png) |![](./assets/q4_0.png) |![](./assets/q4_1.png) | |
|
|
|
#### img2img example |
|
|
|
- `./output.png` is the image generated from the above txt2img pipeline |
|
|
|
|
|
``` |
|
./bin/sd --mode img2img -m ../models/sd-v1-4-ggml-model-f16.bin -p "cat with blue eyes" -i ./output.png -o ./img2img_output.png --strength 0.4 |
|
``` |
|
|
|
<p align="center"> |
|
<img src="./assets/img2img_output.png" width="256x"> |
|
</p> |
|
|
|
### Docker |
|
|
|
#### Building using Docker |
|
|
|
```shell |
|
docker build -t sd . |
|
``` |
|
|
|
#### Run |
|
|
|
```shell |
|
docker run -v /path/to/models:/models -v /path/to/output/:/output sd [args...] |
|
# For example |
|
# docker run -v ./models:/models -v ./build:/output sd -m /models/sd-v1-4-ggml-model-f16.bin -p "a lovely cat" -v -o /output/output.png |
|
``` |
|
|
|
## Memory/Disk Requirements |
|
|
|
| precision | f32 | f16 |q8_0 |q5_0 |q5_1 |q4_0 |q4_1 | |
|
| ---- | ---- |---- |---- |---- |---- |---- |---- | |
|
| **Disk** | 2.7G | 2.0G | 1.7G | 1.6G | 1.6G | 1.5G | 1.5G | |
|
| **Memory**(txt2img - 512 x 512) | ~2.8G | ~2.3G | ~2.1G | ~2.0G | ~2.0G | ~2.0G | ~2.0G | |
|
|
|
|
|
## References |
|
|
|
- [ggml](https://github.com/ggerganov/ggml) |
|
- [stable-diffusion](https://github.com/CompVis/stable-diffusion) |
|
- [stable-diffusion-stability-ai](https://github.com/Stability-AI/stablediffusion) |
|
- [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) |
|
- [k-diffusion](https://github.com/crowsonkb/k-diffusion) |
|
|