lewtun's picture
lewtun HF staff
Add evaluation results on cifar10 dataset
4d6cfbc
|
raw
history blame
3.05 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - cifar10
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-cifar10
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: cifar10
          type: cifar10
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9875
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: cifar10
          type: cifar10
          config: plain_text
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.973
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.9734266055324291
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.973
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.9734266055324291
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.9730000000000001
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.973
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.973
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.9730140713232215
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.973
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.9730140713232215
            verified: true
          - name: loss
            type: loss
            value: 0.09959099441766739
            verified: true

vit-base-patch16-224-in21k-finetuned-cifar10

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cifar10 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0503
  • Accuracy: 0.9875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3118 1.0 1562 0.1135 0.9778
0.2717 2.0 3124 0.0619 0.9867
0.1964 3.0 4686 0.0503 0.9875

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.11.0
  • Datasets 2.0.0
  • Tokenizers 0.11.6