metadata
license: apache-2.0
language:
- tr
base_model: Orbina/Orbita-v0.1
tags:
- TensorBlock
- GGUF
model-index:
- name: Orbita-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge TR
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 41.97
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag TR
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc
value: 48
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU TR
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.51
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA TR
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: acc
value: 50.78
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande TR
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.16
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k TR
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.41
name: accuracy
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Orbina/Orbita-v0.1 - GGUF
This repo contains GGUF format model files for Orbina/Orbita-v0.1.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Orbita-v0.1-Q2_K.gguf | Q2_K | 5.506 GB | smallest, significant quality loss - not recommended for most purposes |
Orbita-v0.1-Q3_K_S.gguf | Q3_K_S | 6.309 GB | very small, high quality loss |
Orbita-v0.1-Q3_K_M.gguf | Q3_K_M | 6.909 GB | very small, high quality loss |
Orbita-v0.1-Q3_K_L.gguf | Q3_K_L | 7.302 GB | small, substantial quality loss |
Orbita-v0.1-Q4_0.gguf | Q4_0 | 7.618 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Orbita-v0.1-Q4_K_S.gguf | Q4_K_S | 7.977 GB | small, greater quality loss |
Orbita-v0.1-Q4_K_M.gguf | Q4_K_M | 8.560 GB | medium, balanced quality - recommended |
Orbita-v0.1-Q5_0.gguf | Q5_0 | 9.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Orbita-v0.1-Q5_K_S.gguf | Q5_K_S | 9.339 GB | large, low quality loss - recommended |
Orbita-v0.1-Q5_K_M.gguf | Q5_K_M | 9.812 GB | large, very low quality loss - recommended |
Orbita-v0.1-Q6_K.gguf | Q6_K | 11.465 GB | very large, extremely low quality loss |
Orbita-v0.1-Q8_0.gguf | Q8_0 | 14.027 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Orbita-v0.1-GGUF --include "Orbita-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Orbita-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'