metadata
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
- transformers
datasets:
- imagenet-1k
Model card for davit_base.msft_in1k
A DaViT image classification model. Trained on ImageNet-1k by paper authors.
Thanks to Fredo Guan for bringing the classification backbone to timm
.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 88.0
- GMACs: 15.5
- Activations (M): 40.7
- Image size: 224 x 224
- Papers:
- DaViT: Dual Attention Vision Transformers: https://arxiv.org/abs/2204.03645
- Original: https://github.com/dingmyu/davit
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('davit_base.msft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'davit_base.msft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 192, 28, 28])
# torch.Size([1, 384, 14, 14])
# torch.Size([1, 768, 7, 7]
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'davit_base.msft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
Model Comparison
By Top-1
model | top1 | top1_err | top5 | top5_err | param_count | img_size | crop_pct | interpolation |
---|---|---|---|---|---|---|---|---|
davit_base.msft_in1k | 84.634 | 15.366 | 97.014 | 2.986 | 87.95 | 224 | 0.95 | bicubic |
davit_small.msft_in1k | 84.25 | 15.75 | 96.94 | 3.06 | 49.75 | 224 | 0.95 | bicubic |
davit_tiny.msft_in1k | 82.676 | 17.324 | 96.276 | 3.724 | 28.36 | 224 | 0.95 | bicubic |
Citation
@inproceedings{ding2022davit,
title={DaViT: Dual Attention Vision Transformer},
author={Ding, Mingyu and Xiao, Bin and Codella, Noel and Luo, Ping and Wang, Jingdong and Yuan, Lu},
booktitle={ECCV},
year={2022},
}