timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
pcuenq's picture
pcuenq HF staff
transformers tag
67a8d7b verified
metadata
license: apache-2.0
library_name: timm
tags:
  - image-classification
  - timm
  - transformers
datasets:
  - imagenet-1k

Model card for davit_base.msft_in1k

A DaViT image classification model. Trained on ImageNet-1k by paper authors.

Thanks to Fredo Guan for bringing the classification backbone to timm.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('davit_base.msft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'davit_base.msft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.: 
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 192, 28, 28])
    #  torch.Size([1, 384, 14, 14])
    #  torch.Size([1, 768, 7, 7]
    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'davit_base.msft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor

output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor

Model Comparison

By Top-1

model top1 top1_err top5 top5_err param_count img_size crop_pct interpolation
davit_base.msft_in1k 84.634 15.366 97.014 2.986 87.95 224 0.95 bicubic
davit_small.msft_in1k 84.25 15.75 96.94 3.06 49.75 224 0.95 bicubic
davit_tiny.msft_in1k 82.676 17.324 96.276 3.724 28.36 224 0.95 bicubic

Citation

@inproceedings{ding2022davit,
    title={DaViT: Dual Attention Vision Transformer}, 
    author={Ding, Mingyu and Xiao, Bin and Codella, Noel and Luo, Ping and Wang, Jingdong and Yuan, Lu},
    booktitle={ECCV},
    year={2022},
}