NeoBERT-gooaq-8e-05 / README.md
tomaarsen's picture
tomaarsen HF staff
Update README.md
0d21a15 verified
|
raw
history blame
47.8 kB
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:3011496
  - loss:CachedMultipleNegativesRankingLoss
base_model: chandar-lab/NeoBERT
widget:
  - source_sentence: how much percent of alcohol is in scotch?
    sentences:
      - >-
        Our 24-hour day comes from the ancient Egyptians who divided day-time
        into 10 hours they measured with devices such as shadow clocks, and
        added a twilight hour at the beginning and another one at the end of the
        day-time, says Lomb. "Night-time was divided in 12 hours, based on the
        observations of stars.
      - >-
        After distillation, a Scotch Whisky can be anywhere between 60-75% ABV,
        with American Whiskey rocketing right into the 90% region. Before being
        placed in casks, Scotch is usually diluted to around 63.5% ABV (68% for
        grain); welcome to the stage cask strength Whisky.
      - >-
        Money For Nothing. In season four Dominic West, the ostensible star of
        the series, requested a reduced role so that he could spend more time
        with his family in London. On the show it was explained that Jimmy
        McNulty had taken a patrol job which required less strenuous work.
  - source_sentence: what are the major causes of poor listening?
    sentences:
      - >-
        The four main causes of poor listening are due to not concentrating,
        listening too hard, jumping to conclusions and focusing on delivery and
        personal appearance. Sometimes we just don't feel attentive enough and
        hence don't concentrate.
      - >-
        That's called being idle. “System Idle Process” is the software that
        runs when the computer has absolutely nothing better to do. It has the
        lowest possible priority and uses as few resources as possible, so that
        if anything at all comes along for the CPU to work on, it can.
      - >-
        No alcohol wine: how it's made It's not easy. There are three main
        methods currently in use. Vacuum distillation sees alcohol and other
        volatiles removed at a relatively low temperature (25°C-30°C), with
        aromatics blended back in afterwards.
  - source_sentence: are jess and justin still together?
    sentences:
      - >-
        Download photos and videos to your device On your iPhone, iPad, or iPod
        touch, tap Settings > [your name] > iCloud > Photos. Then select
        Download and Keep Originals and import the photos to your computer. On
        your Mac, open the Photos app. Select the photos and videos you want to
        copy.
      - >-
        Later, Justin reunites with Jessica at prom and the two get back
        together. ... After a tearful goodbye to Jessica, the Jensens, and his
        friends, Justin dies just before graduation.
      - >-
        Incumbent president Muhammadu Buhari won his reelection bid, defeating
        his closest rival Atiku Abubakar by over 3 million votes. He was issued
        a Certificate of Return, and was sworn in on May 29, 2019, the former
        date of Democracy Day (Nigeria).
  - source_sentence: when humans are depicted in hindu art?
    sentences:
      - >-
        Answer: Humans are depicted in Hindu art often in sensuous and erotic
        postures.
      - >-
        Bettas are carnivores. They require foods high in animal protein. Their
        preferred diet in nature includes insects and insect larvae. In
        captivity, they thrive on a varied diet of pellets or flakes made from
        fish meal, as well as frozen or freeze-dried bloodworms.
      - >-
        An active continental margin is found on the leading edge of the
        continent where it is crashing into an oceanic plate. ... Passive
        continental margins are found along the remaining coastlines.
  - source_sentence: what is the difference between 18 and 20 inch tires?
    sentences:
      - >-
        ['Alienware m17 R3. The best gaming laptop overall offers big power in
        slim, redesigned chassis. ... ', 'Dell G3 15. ... ', 'Asus ROG Zephyrus
        G14. ... ', 'Lenovo Legion Y545. ... ', 'Alienware Area 51m. ... ',
        'Asus ROG Mothership. ... ', 'Asus ROG Strix Scar III. ... ', 'HP Omen
        17 (2019)']
      - >-
        So extracurricular activities are just activities that you do outside of
        class. The Common App says that extracurricular activities "include
        arts, athletics, clubs, employment, personal commitments, and other
        pursuits."
      - >-
        The only real difference is a 20" rim would be more likely to be
        damaged, as you pointed out. Beyond looks, there is zero benefit for the
        20" rim. Also, just the availability of tires will likely be much more
        limited for the larger rim. ... Tire selection is better for 18" wheels
        than 20" wheels.
datasets:
  - sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on chandar-lab/NeoBERT
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: cosine_accuracy@1
            value: 0.46
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.64
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.76
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.46
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14400000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.43
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.62
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.68
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.73
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.592134936685869
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5606666666666666
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5501347879979241
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: cosine_accuracy@1
            value: 0.32
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.58
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.68
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.74
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.32
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.19333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.136
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07400000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.32
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.58
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.68
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.74
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5415424816174165
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4768333333333334
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.49019229786708785
            name: Cosine Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: cosine_accuracy@1
            value: 0.39
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.61
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.69
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.75
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.39
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.20666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07700000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.375
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.68
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.735
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5668387091516427
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.51875
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.520163542932506
            name: Cosine Map@100

SentenceTransformer based on chandar-lab/NeoBERT

This is a sentence-transformers model finetuned from chandar-lab/NeoBERT on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model has been finetuned using train_st_gooaq.py using an RTX 3090. It used the same training script as tomaarsen/ModernBERT-base-gooaq.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: chandar-lab/NeoBERT
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NeoBERT 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/NeoBERT-gooaq-8e-05")
# Run inference
sentences = [
    'what is the difference between 18 and 20 inch tires?',
    'The only real difference is a 20" rim would be more likely to be damaged, as you pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the availability of tires will likely be much more limited for the larger rim. ... Tire selection is better for 18" wheels than 20" wheels.',
    'So extracurricular activities are just activities that you do outside of class. The Common App says that extracurricular activities "include arts, athletics, clubs, employment, personal commitments, and other pursuits."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric NanoNQ NanoMSMARCO
cosine_accuracy@1 0.46 0.32
cosine_accuracy@3 0.64 0.58
cosine_accuracy@5 0.7 0.68
cosine_accuracy@10 0.76 0.74
cosine_precision@1 0.46 0.32
cosine_precision@3 0.22 0.1933
cosine_precision@5 0.144 0.136
cosine_precision@10 0.08 0.074
cosine_recall@1 0.43 0.32
cosine_recall@3 0.62 0.58
cosine_recall@5 0.68 0.68
cosine_recall@10 0.73 0.74
cosine_ndcg@10 0.5921 0.5415
cosine_mrr@10 0.5607 0.4768
cosine_map@100 0.5501 0.4902

Nano BEIR

Metric Value
cosine_accuracy@1 0.39
cosine_accuracy@3 0.61
cosine_accuracy@5 0.69
cosine_accuracy@10 0.75
cosine_precision@1 0.39
cosine_precision@3 0.2067
cosine_precision@5 0.14
cosine_precision@10 0.077
cosine_recall@1 0.375
cosine_recall@3 0.6
cosine_recall@5 0.68
cosine_recall@10 0.735
cosine_ndcg@10 0.5668
cosine_mrr@10 0.5188
cosine_map@100 0.5202

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,011,496 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.87 tokens
    • max: 23 tokens
    • min: 14 tokens
    • mean: 60.09 tokens
    • max: 201 tokens
  • Samples:
    question answer
    what is the difference between clay and mud mask? The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
    myki how much on card? A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
    how to find out if someone blocked your phone number on iphone? If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 1,000 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.88 tokens
    • max: 22 tokens
    • min: 14 tokens
    • mean: 61.03 tokens
    • max: 127 tokens
  • Samples:
    question answer
    how do i program my directv remote with my tv? ['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
    are rodrigues fruit bats nocturnal? Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
    why does your heart rate increase during exercise bbc bitesize? During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • learning_rate: 8e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.05
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 8e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoNQ_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
-1 -1 - - 0.0428 0.1127 0.0777
0.0068 10 4.2332 - - - -
0.0136 20 1.5303 - - - -
0.0204 30 0.887 - - - -
0.0272 40 0.6286 - - - -
0.0340 50 0.5193 0.2091 0.4434 0.4454 0.4444
0.0408 60 0.4423 - - - -
0.0476 70 0.3842 - - - -
0.0544 80 0.3576 - - - -
0.0612 90 0.3301 - - - -
0.0680 100 0.3135 0.1252 0.4606 0.5150 0.4878
0.0748 110 0.302 - - - -
0.0816 120 0.277 - - - -
0.0884 130 0.2694 - - - -
0.0952 140 0.2628 - - - -
0.1020 150 0.2471 0.0949 0.5135 0.5133 0.5134
0.1088 160 0.2343 - - - -
0.1156 170 0.2386 - - - -
0.1224 180 0.219 - - - -
0.1292 190 0.217 - - - -
0.1360 200 0.2073 0.0870 0.5281 0.4824 0.5052
0.1428 210 0.2208 - - - -
0.1496 220 0.2046 - - - -
0.1564 230 0.2045 - - - -
0.1632 240 0.1987 - - - -
0.1700 250 0.1949 0.0734 0.5781 0.4976 0.5378
0.1768 260 0.1888 - - - -
0.1835 270 0.187 - - - -
0.1903 280 0.1834 - - - -
0.1971 290 0.1747 - - - -
0.2039 300 0.1805 0.0663 0.5580 0.5453 0.5516
0.2107 310 0.1738 - - - -
0.2175 320 0.1707 - - - -
0.2243 330 0.1758 - - - -
0.2311 340 0.1762 - - - -
0.2379 350 0.1649 0.0624 0.5761 0.5310 0.5535
0.2447 360 0.1682 - - - -
0.2515 370 0.1629 - - - -
0.2583 380 0.1595 - - - -
0.2651 390 0.1571 - - - -
0.2719 400 0.1617 0.0592 0.5865 0.5193 0.5529
0.2787 410 0.1521 - - - -
0.2855 420 0.1518 - - - -
0.2923 430 0.1583 - - - -
0.2991 440 0.1516 - - - -
0.3059 450 0.1473 0.0570 0.5844 0.5181 0.5512
0.3127 460 0.1491 - - - -
0.3195 470 0.1487 - - - -
0.3263 480 0.1457 - - - -
0.3331 490 0.1463 - - - -
0.3399 500 0.141 0.0571 0.5652 0.5027 0.5340
0.3467 510 0.1438 - - - -
0.3535 520 0.148 - - - -
0.3603 530 0.136 - - - -
0.3671 540 0.1359 - - - -
0.3739 550 0.1388 0.0507 0.5457 0.4660 0.5058
0.3807 560 0.1358 - - - -
0.3875 570 0.1365 - - - -
0.3943 580 0.1328 - - - -
0.4011 590 0.1404 - - - -
0.4079 600 0.1304 0.0524 0.5477 0.5259 0.5368
0.4147 610 0.1321 - - - -
0.4215 620 0.1322 - - - -
0.4283 630 0.1262 - - - -
0.4351 640 0.1339 - - - -
0.4419 650 0.1257 0.0494 0.5564 0.4920 0.5242
0.4487 660 0.1247 - - - -
0.4555 670 0.1316 - - - -
0.4623 680 0.124 - - - -
0.4691 690 0.1247 - - - -
0.4759 700 0.1212 0.0480 0.5663 0.5040 0.5351
0.4827 710 0.1194 - - - -
0.4895 720 0.1224 - - - -
0.4963 730 0.1225 - - - -
0.5031 740 0.1209 - - - -
0.5099 750 0.1197 0.0447 0.5535 0.5127 0.5331
0.5167 760 0.1196 - - - -
0.5235 770 0.1129 - - - -
0.5303 780 0.1223 - - - -
0.5370 790 0.1159 - - - -
0.5438 800 0.1178 0.0412 0.5558 0.5275 0.5416
0.5506 810 0.1186 - - - -
0.5574 820 0.1153 - - - -
0.5642 830 0.1178 - - - -
0.5710 840 0.1155 - - - -
0.5778 850 0.1152 0.0432 0.5738 0.5243 0.5490
0.5846 860 0.1101 - - - -
0.5914 870 0.1057 - - - -
0.5982 880 0.1141 - - - -
0.6050 890 0.1172 - - - -
0.6118 900 0.1146 0.0414 0.5641 0.4805 0.5223
0.6186 910 0.1094 - - - -
0.6254 920 0.1116 - - - -
0.6322 930 0.111 - - - -
0.6390 940 0.1078 - - - -
0.6458 950 0.1041 0.0424 0.5883 0.5412 0.5647
0.6526 960 0.1068 - - - -
0.6594 970 0.1076 - - - -
0.6662 980 0.1068 - - - -
0.6730 990 0.1038 - - - -
0.6798 1000 0.1017 0.0409 0.5850 0.5117 0.5483
0.6866 1010 0.1079 - - - -
0.6934 1020 0.1067 - - - -
0.7002 1030 0.1079 - - - -
0.7070 1040 0.1039 - - - -
0.7138 1050 0.1016 0.0356 0.5927 0.5344 0.5636
0.7206 1060 0.1017 - - - -
0.7274 1070 0.1029 - - - -
0.7342 1080 0.1038 - - - -
0.7410 1090 0.0994 - - - -
0.7478 1100 0.0984 0.0376 0.5618 0.5321 0.5470
0.7546 1110 0.0966 - - - -
0.7614 1120 0.1024 - - - -
0.7682 1130 0.099 - - - -
0.7750 1140 0.1017 - - - -
0.7818 1150 0.0951 0.0368 0.5832 0.5073 0.5453
0.7886 1160 0.1008 - - - -
0.7954 1170 0.096 - - - -
0.8022 1180 0.0962 - - - -
0.8090 1190 0.1004 - - - -
0.8158 1200 0.0986 0.0321 0.5895 0.5242 0.5568
0.8226 1210 0.0966 - - - -
0.8294 1220 0.096 - - - -
0.8362 1230 0.0962 - - - -
0.8430 1240 0.0987 - - - -
0.8498 1250 0.096 0.0316 0.5801 0.5434 0.5617
0.8566 1260 0.097 - - - -
0.8634 1270 0.0929 - - - -
0.8702 1280 0.0973 - - - -
0.8770 1290 0.0973 - - - -
0.8838 1300 0.0939 0.0330 0.5916 0.5478 0.5697
0.8906 1310 0.0968 - - - -
0.8973 1320 0.0969 - - - -
0.9041 1330 0.0931 - - - -
0.9109 1340 0.0919 - - - -
0.9177 1350 0.0916 0.0324 0.5908 0.5308 0.5608
0.9245 1360 0.0903 - - - -
0.9313 1370 0.0957 - - - -
0.9381 1380 0.0891 - - - -
0.9449 1390 0.0909 - - - -
0.9517 1400 0.0924 0.0318 0.5823 0.5388 0.5605
0.9585 1410 0.0932 - - - -
0.9653 1420 0.0916 - - - -
0.9721 1430 0.0966 - - - -
0.9789 1440 0.0864 - - - -
0.9857 1450 0.0872 0.0311 0.5895 0.5442 0.5668
0.9925 1460 0.0897 - - - -
0.9993 1470 0.086 - - - -
-1 -1 - - 0.5921 0.5415 0.5668

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.5.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.0
  • Datasets: 2.21.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}