metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3011496
- loss:CachedMultipleNegativesRankingLoss
base_model: chandar-lab/NeoBERT
widget:
- source_sentence: how much percent of alcohol is in scotch?
sentences:
- >-
Our 24-hour day comes from the ancient Egyptians who divided day-time
into 10 hours they measured with devices such as shadow clocks, and
added a twilight hour at the beginning and another one at the end of the
day-time, says Lomb. "Night-time was divided in 12 hours, based on the
observations of stars.
- >-
After distillation, a Scotch Whisky can be anywhere between 60-75% ABV,
with American Whiskey rocketing right into the 90% region. Before being
placed in casks, Scotch is usually diluted to around 63.5% ABV (68% for
grain); welcome to the stage cask strength Whisky.
- >-
Money For Nothing. In season four Dominic West, the ostensible star of
the series, requested a reduced role so that he could spend more time
with his family in London. On the show it was explained that Jimmy
McNulty had taken a patrol job which required less strenuous work.
- source_sentence: what are the major causes of poor listening?
sentences:
- >-
The four main causes of poor listening are due to not concentrating,
listening too hard, jumping to conclusions and focusing on delivery and
personal appearance. Sometimes we just don't feel attentive enough and
hence don't concentrate.
- >-
That's called being idle. “System Idle Process” is the software that
runs when the computer has absolutely nothing better to do. It has the
lowest possible priority and uses as few resources as possible, so that
if anything at all comes along for the CPU to work on, it can.
- >-
No alcohol wine: how it's made It's not easy. There are three main
methods currently in use. Vacuum distillation sees alcohol and other
volatiles removed at a relatively low temperature (25°C-30°C), with
aromatics blended back in afterwards.
- source_sentence: are jess and justin still together?
sentences:
- >-
Download photos and videos to your device On your iPhone, iPad, or iPod
touch, tap Settings > [your name] > iCloud > Photos. Then select
Download and Keep Originals and import the photos to your computer. On
your Mac, open the Photos app. Select the photos and videos you want to
copy.
- >-
Later, Justin reunites with Jessica at prom and the two get back
together. ... After a tearful goodbye to Jessica, the Jensens, and his
friends, Justin dies just before graduation.
- >-
Incumbent president Muhammadu Buhari won his reelection bid, defeating
his closest rival Atiku Abubakar by over 3 million votes. He was issued
a Certificate of Return, and was sworn in on May 29, 2019, the former
date of Democracy Day (Nigeria).
- source_sentence: when humans are depicted in hindu art?
sentences:
- >-
Answer: Humans are depicted in Hindu art often in sensuous and erotic
postures.
- >-
Bettas are carnivores. They require foods high in animal protein. Their
preferred diet in nature includes insects and insect larvae. In
captivity, they thrive on a varied diet of pellets or flakes made from
fish meal, as well as frozen or freeze-dried bloodworms.
- >-
An active continental margin is found on the leading edge of the
continent where it is crashing into an oceanic plate. ... Passive
continental margins are found along the remaining coastlines.
- source_sentence: what is the difference between 18 and 20 inch tires?
sentences:
- >-
['Alienware m17 R3. The best gaming laptop overall offers big power in
slim, redesigned chassis. ... ', 'Dell G3 15. ... ', 'Asus ROG Zephyrus
G14. ... ', 'Lenovo Legion Y545. ... ', 'Alienware Area 51m. ... ',
'Asus ROG Mothership. ... ', 'Asus ROG Strix Scar III. ... ', 'HP Omen
17 (2019)']
- >-
So extracurricular activities are just activities that you do outside of
class. The Common App says that extracurricular activities "include
arts, athletics, clubs, employment, personal commitments, and other
pursuits."
- >-
The only real difference is a 20" rim would be more likely to be
damaged, as you pointed out. Beyond looks, there is zero benefit for the
20" rim. Also, just the availability of tires will likely be much more
limited for the larger rim. ... Tire selection is better for 18" wheels
than 20" wheels.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on chandar-lab/NeoBERT
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.46
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.64
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.76
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.46
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.22
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.43
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.62
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.73
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.592134936685869
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5606666666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5501347879979241
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.32
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.74
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.136
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07400000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.32
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.58
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.74
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5415424816174165
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4768333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49019229786708785
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.39
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.61
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.69
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.75
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.39
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07700000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.735
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5668387091516427
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.51875
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.520163542932506
name: Cosine Map@100
SentenceTransformer based on chandar-lab/NeoBERT
This is a sentence-transformers model finetuned from chandar-lab/NeoBERT on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model has been finetuned using train_st_gooaq.py using an RTX 3090. It used the same training script as tomaarsen/ModernBERT-base-gooaq.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: chandar-lab/NeoBERT
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NeoBERT
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/NeoBERT-gooaq-8e-05")
# Run inference
sentences = [
'what is the difference between 18 and 20 inch tires?',
'The only real difference is a 20" rim would be more likely to be damaged, as you pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the availability of tires will likely be much more limited for the larger rim. ... Tire selection is better for 18" wheels than 20" wheels.',
'So extracurricular activities are just activities that you do outside of class. The Common App says that extracurricular activities "include arts, athletics, clubs, employment, personal commitments, and other pursuits."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoNQ
andNanoMSMARCO
- Evaluated with
InformationRetrievalEvaluator
Metric | NanoNQ | NanoMSMARCO |
---|---|---|
cosine_accuracy@1 | 0.46 | 0.32 |
cosine_accuracy@3 | 0.64 | 0.58 |
cosine_accuracy@5 | 0.7 | 0.68 |
cosine_accuracy@10 | 0.76 | 0.74 |
cosine_precision@1 | 0.46 | 0.32 |
cosine_precision@3 | 0.22 | 0.1933 |
cosine_precision@5 | 0.144 | 0.136 |
cosine_precision@10 | 0.08 | 0.074 |
cosine_recall@1 | 0.43 | 0.32 |
cosine_recall@3 | 0.62 | 0.58 |
cosine_recall@5 | 0.68 | 0.68 |
cosine_recall@10 | 0.73 | 0.74 |
cosine_ndcg@10 | 0.5921 | 0.5415 |
cosine_mrr@10 | 0.5607 | 0.4768 |
cosine_map@100 | 0.5501 | 0.4902 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.39 |
cosine_accuracy@3 | 0.61 |
cosine_accuracy@5 | 0.69 |
cosine_accuracy@10 | 0.75 |
cosine_precision@1 | 0.39 |
cosine_precision@3 | 0.2067 |
cosine_precision@5 | 0.14 |
cosine_precision@10 | 0.077 |
cosine_recall@1 | 0.375 |
cosine_recall@3 | 0.6 |
cosine_recall@5 | 0.68 |
cosine_recall@10 | 0.735 |
cosine_ndcg@10 | 0.5668 |
cosine_mrr@10 | 0.5188 |
cosine_map@100 | 0.5202 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,011,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.87 tokens
- max: 23 tokens
- min: 14 tokens
- mean: 60.09 tokens
- max: 201 tokens
- Samples:
question answer what is the difference between clay and mud mask?
The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
myki how much on card?
A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
how to find out if someone blocked your phone number on iphone?
If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.88 tokens
- max: 22 tokens
- min: 14 tokens
- mean: 61.03 tokens
- max: 127 tokens
- Samples:
question answer how do i program my directv remote with my tv?
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
are rodrigues fruit bats nocturnal?
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
why does your heart rate increase during exercise bbc bitesize?
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2048per_device_eval_batch_size
: 2048learning_rate
: 8e-05num_train_epochs
: 1warmup_ratio
: 0.05bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2048per_device_eval_batch_size
: 2048per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 8e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.0428 | 0.1127 | 0.0777 |
0.0068 | 10 | 4.2332 | - | - | - | - |
0.0136 | 20 | 1.5303 | - | - | - | - |
0.0204 | 30 | 0.887 | - | - | - | - |
0.0272 | 40 | 0.6286 | - | - | - | - |
0.0340 | 50 | 0.5193 | 0.2091 | 0.4434 | 0.4454 | 0.4444 |
0.0408 | 60 | 0.4423 | - | - | - | - |
0.0476 | 70 | 0.3842 | - | - | - | - |
0.0544 | 80 | 0.3576 | - | - | - | - |
0.0612 | 90 | 0.3301 | - | - | - | - |
0.0680 | 100 | 0.3135 | 0.1252 | 0.4606 | 0.5150 | 0.4878 |
0.0748 | 110 | 0.302 | - | - | - | - |
0.0816 | 120 | 0.277 | - | - | - | - |
0.0884 | 130 | 0.2694 | - | - | - | - |
0.0952 | 140 | 0.2628 | - | - | - | - |
0.1020 | 150 | 0.2471 | 0.0949 | 0.5135 | 0.5133 | 0.5134 |
0.1088 | 160 | 0.2343 | - | - | - | - |
0.1156 | 170 | 0.2386 | - | - | - | - |
0.1224 | 180 | 0.219 | - | - | - | - |
0.1292 | 190 | 0.217 | - | - | - | - |
0.1360 | 200 | 0.2073 | 0.0870 | 0.5281 | 0.4824 | 0.5052 |
0.1428 | 210 | 0.2208 | - | - | - | - |
0.1496 | 220 | 0.2046 | - | - | - | - |
0.1564 | 230 | 0.2045 | - | - | - | - |
0.1632 | 240 | 0.1987 | - | - | - | - |
0.1700 | 250 | 0.1949 | 0.0734 | 0.5781 | 0.4976 | 0.5378 |
0.1768 | 260 | 0.1888 | - | - | - | - |
0.1835 | 270 | 0.187 | - | - | - | - |
0.1903 | 280 | 0.1834 | - | - | - | - |
0.1971 | 290 | 0.1747 | - | - | - | - |
0.2039 | 300 | 0.1805 | 0.0663 | 0.5580 | 0.5453 | 0.5516 |
0.2107 | 310 | 0.1738 | - | - | - | - |
0.2175 | 320 | 0.1707 | - | - | - | - |
0.2243 | 330 | 0.1758 | - | - | - | - |
0.2311 | 340 | 0.1762 | - | - | - | - |
0.2379 | 350 | 0.1649 | 0.0624 | 0.5761 | 0.5310 | 0.5535 |
0.2447 | 360 | 0.1682 | - | - | - | - |
0.2515 | 370 | 0.1629 | - | - | - | - |
0.2583 | 380 | 0.1595 | - | - | - | - |
0.2651 | 390 | 0.1571 | - | - | - | - |
0.2719 | 400 | 0.1617 | 0.0592 | 0.5865 | 0.5193 | 0.5529 |
0.2787 | 410 | 0.1521 | - | - | - | - |
0.2855 | 420 | 0.1518 | - | - | - | - |
0.2923 | 430 | 0.1583 | - | - | - | - |
0.2991 | 440 | 0.1516 | - | - | - | - |
0.3059 | 450 | 0.1473 | 0.0570 | 0.5844 | 0.5181 | 0.5512 |
0.3127 | 460 | 0.1491 | - | - | - | - |
0.3195 | 470 | 0.1487 | - | - | - | - |
0.3263 | 480 | 0.1457 | - | - | - | - |
0.3331 | 490 | 0.1463 | - | - | - | - |
0.3399 | 500 | 0.141 | 0.0571 | 0.5652 | 0.5027 | 0.5340 |
0.3467 | 510 | 0.1438 | - | - | - | - |
0.3535 | 520 | 0.148 | - | - | - | - |
0.3603 | 530 | 0.136 | - | - | - | - |
0.3671 | 540 | 0.1359 | - | - | - | - |
0.3739 | 550 | 0.1388 | 0.0507 | 0.5457 | 0.4660 | 0.5058 |
0.3807 | 560 | 0.1358 | - | - | - | - |
0.3875 | 570 | 0.1365 | - | - | - | - |
0.3943 | 580 | 0.1328 | - | - | - | - |
0.4011 | 590 | 0.1404 | - | - | - | - |
0.4079 | 600 | 0.1304 | 0.0524 | 0.5477 | 0.5259 | 0.5368 |
0.4147 | 610 | 0.1321 | - | - | - | - |
0.4215 | 620 | 0.1322 | - | - | - | - |
0.4283 | 630 | 0.1262 | - | - | - | - |
0.4351 | 640 | 0.1339 | - | - | - | - |
0.4419 | 650 | 0.1257 | 0.0494 | 0.5564 | 0.4920 | 0.5242 |
0.4487 | 660 | 0.1247 | - | - | - | - |
0.4555 | 670 | 0.1316 | - | - | - | - |
0.4623 | 680 | 0.124 | - | - | - | - |
0.4691 | 690 | 0.1247 | - | - | - | - |
0.4759 | 700 | 0.1212 | 0.0480 | 0.5663 | 0.5040 | 0.5351 |
0.4827 | 710 | 0.1194 | - | - | - | - |
0.4895 | 720 | 0.1224 | - | - | - | - |
0.4963 | 730 | 0.1225 | - | - | - | - |
0.5031 | 740 | 0.1209 | - | - | - | - |
0.5099 | 750 | 0.1197 | 0.0447 | 0.5535 | 0.5127 | 0.5331 |
0.5167 | 760 | 0.1196 | - | - | - | - |
0.5235 | 770 | 0.1129 | - | - | - | - |
0.5303 | 780 | 0.1223 | - | - | - | - |
0.5370 | 790 | 0.1159 | - | - | - | - |
0.5438 | 800 | 0.1178 | 0.0412 | 0.5558 | 0.5275 | 0.5416 |
0.5506 | 810 | 0.1186 | - | - | - | - |
0.5574 | 820 | 0.1153 | - | - | - | - |
0.5642 | 830 | 0.1178 | - | - | - | - |
0.5710 | 840 | 0.1155 | - | - | - | - |
0.5778 | 850 | 0.1152 | 0.0432 | 0.5738 | 0.5243 | 0.5490 |
0.5846 | 860 | 0.1101 | - | - | - | - |
0.5914 | 870 | 0.1057 | - | - | - | - |
0.5982 | 880 | 0.1141 | - | - | - | - |
0.6050 | 890 | 0.1172 | - | - | - | - |
0.6118 | 900 | 0.1146 | 0.0414 | 0.5641 | 0.4805 | 0.5223 |
0.6186 | 910 | 0.1094 | - | - | - | - |
0.6254 | 920 | 0.1116 | - | - | - | - |
0.6322 | 930 | 0.111 | - | - | - | - |
0.6390 | 940 | 0.1078 | - | - | - | - |
0.6458 | 950 | 0.1041 | 0.0424 | 0.5883 | 0.5412 | 0.5647 |
0.6526 | 960 | 0.1068 | - | - | - | - |
0.6594 | 970 | 0.1076 | - | - | - | - |
0.6662 | 980 | 0.1068 | - | - | - | - |
0.6730 | 990 | 0.1038 | - | - | - | - |
0.6798 | 1000 | 0.1017 | 0.0409 | 0.5850 | 0.5117 | 0.5483 |
0.6866 | 1010 | 0.1079 | - | - | - | - |
0.6934 | 1020 | 0.1067 | - | - | - | - |
0.7002 | 1030 | 0.1079 | - | - | - | - |
0.7070 | 1040 | 0.1039 | - | - | - | - |
0.7138 | 1050 | 0.1016 | 0.0356 | 0.5927 | 0.5344 | 0.5636 |
0.7206 | 1060 | 0.1017 | - | - | - | - |
0.7274 | 1070 | 0.1029 | - | - | - | - |
0.7342 | 1080 | 0.1038 | - | - | - | - |
0.7410 | 1090 | 0.0994 | - | - | - | - |
0.7478 | 1100 | 0.0984 | 0.0376 | 0.5618 | 0.5321 | 0.5470 |
0.7546 | 1110 | 0.0966 | - | - | - | - |
0.7614 | 1120 | 0.1024 | - | - | - | - |
0.7682 | 1130 | 0.099 | - | - | - | - |
0.7750 | 1140 | 0.1017 | - | - | - | - |
0.7818 | 1150 | 0.0951 | 0.0368 | 0.5832 | 0.5073 | 0.5453 |
0.7886 | 1160 | 0.1008 | - | - | - | - |
0.7954 | 1170 | 0.096 | - | - | - | - |
0.8022 | 1180 | 0.0962 | - | - | - | - |
0.8090 | 1190 | 0.1004 | - | - | - | - |
0.8158 | 1200 | 0.0986 | 0.0321 | 0.5895 | 0.5242 | 0.5568 |
0.8226 | 1210 | 0.0966 | - | - | - | - |
0.8294 | 1220 | 0.096 | - | - | - | - |
0.8362 | 1230 | 0.0962 | - | - | - | - |
0.8430 | 1240 | 0.0987 | - | - | - | - |
0.8498 | 1250 | 0.096 | 0.0316 | 0.5801 | 0.5434 | 0.5617 |
0.8566 | 1260 | 0.097 | - | - | - | - |
0.8634 | 1270 | 0.0929 | - | - | - | - |
0.8702 | 1280 | 0.0973 | - | - | - | - |
0.8770 | 1290 | 0.0973 | - | - | - | - |
0.8838 | 1300 | 0.0939 | 0.0330 | 0.5916 | 0.5478 | 0.5697 |
0.8906 | 1310 | 0.0968 | - | - | - | - |
0.8973 | 1320 | 0.0969 | - | - | - | - |
0.9041 | 1330 | 0.0931 | - | - | - | - |
0.9109 | 1340 | 0.0919 | - | - | - | - |
0.9177 | 1350 | 0.0916 | 0.0324 | 0.5908 | 0.5308 | 0.5608 |
0.9245 | 1360 | 0.0903 | - | - | - | - |
0.9313 | 1370 | 0.0957 | - | - | - | - |
0.9381 | 1380 | 0.0891 | - | - | - | - |
0.9449 | 1390 | 0.0909 | - | - | - | - |
0.9517 | 1400 | 0.0924 | 0.0318 | 0.5823 | 0.5388 | 0.5605 |
0.9585 | 1410 | 0.0932 | - | - | - | - |
0.9653 | 1420 | 0.0916 | - | - | - | - |
0.9721 | 1430 | 0.0966 | - | - | - | - |
0.9789 | 1440 | 0.0864 | - | - | - | - |
0.9857 | 1450 | 0.0872 | 0.0311 | 0.5895 | 0.5442 | 0.5668 |
0.9925 | 1460 | 0.0897 | - | - | - | - |
0.9993 | 1470 | 0.086 | - | - | - | - |
-1 | -1 | - | - | 0.5921 | 0.5415 | 0.5668 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 2.21.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}