MedQA_L3_1000steps_1e7rate_SFT
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7486
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.774 | 0.0489 | 50 | 1.7867 |
1.7099 | 0.0977 | 100 | 1.6989 |
1.5873 | 0.1466 | 150 | 1.5668 |
1.4721 | 0.1954 | 200 | 1.4501 |
1.3469 | 0.2443 | 250 | 1.3336 |
1.2381 | 0.2931 | 300 | 1.2152 |
1.1195 | 0.3420 | 350 | 1.1046 |
1.0094 | 0.3908 | 400 | 1.0086 |
0.9372 | 0.4397 | 450 | 0.9280 |
0.8756 | 0.4885 | 500 | 0.8669 |
0.8221 | 0.5374 | 550 | 0.8219 |
0.8048 | 0.5862 | 600 | 0.7900 |
0.7759 | 0.6351 | 650 | 0.7691 |
0.7465 | 0.6839 | 700 | 0.7568 |
0.7426 | 0.7328 | 750 | 0.7506 |
0.7462 | 0.7816 | 800 | 0.7488 |
0.7764 | 0.8305 | 850 | 0.7486 |
0.7327 | 0.8793 | 900 | 0.7486 |
0.7316 | 0.9282 | 950 | 0.7486 |
0.7478 | 0.9770 | 1000 | 0.7486 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tsavage68/MedQA_L3_1000steps_1e7rate_SFT
Base model
meta-llama/Meta-Llama-3-8B-Instruct