metadata
title: ToxicHermes-2.5-Mistral-7B Quantized in GGUF
tags:
- GGUF
language: en
GGUF's of ToxicHermes-2.5-Mistral-7B
This is a GGUF quantization of ToxicHermes-2.5-Mistral-7B.
Original Model Card:
ToxicHermes
OpenHermes-2.5 model + toxic-dpo Dataset = ToxicHermes
fine-tuned with Direct Preference Optimization (DPO)
- Base Model: teknium/OpenHermes-2.5-Mistral-7B
- Dataset: unalignment/toxic-dpo-v0.1
Usage
You can also run this model using the following code:
import transformers
from transformers import AutoTokenizer
model = "joey00072/ToxicHermes-2.5-Mistral-7B"
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
Training hyperparameters
LoRA:
- r=16
- lora_alpha=16
- lora_dropout=0.05
- bias="none"
- task_type="CAUSAL_LM"
- target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
Training arguments:
- per_device_train_batch_size=4
- gradient_accumulation_steps=4
- gradient_checkpointing=True
- learning_rate=5e-5
- lr_scheduler_type="cosine"
- max_steps=200
- optim="paged_adamw_32bit"
- warmup_steps=100
DPOTrainer:
- beta=0.1
- max_prompt_length=1024
- max_length=1536