Edit model card

Chinese GPT2 Models

Model description

The set of GPT2 models, except for GPT2-xlarge model, are pre-trained by UER-py, which is introduced in this paper. The GPT2-xlarge model is pre-trained by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework. Besides, the other models could also be pre-trained by TencentPretrain.

The model is used to generate Chinese texts. You can download the set of Chinese GPT2 models either from the UER-py Modelzoo page, or via HuggingFace from the links below:

Link
GPT2-distil L=6/H=768
GPT2 L=12/H=768
GPT2-medium L=24/H=1024
GPT2-large L=36/H=1280
GPT2-xlarge L=48/H=1600

Note that the 6-layer model is called GPT2-distil model because it follows the configuration of distilgpt2, and the pre-training does not involve the supervision of larger models.

How to use

You can use the model directly with a pipeline for text generation (take the case of GPT2-distil):

>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> text_generator = TextGenerationPipeline(model, tokenizer)   
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
    [{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]

Training data

CLUECorpusSmall is used as training data.

Training procedure

The GPT2-xlarge model is pre-trained by TencentPretrain, and the others are pre-trained by UER-py on Tencent Cloud. We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024.

For the models pre-trained by UER-py, take the case of GPT2-distil

Stage1:

python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor lm 
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/gpt2/distil_config.json \
                    --output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64

Stage2:

python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                      --seq_length 1024 --processes_num 32 --data_processor lm 
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \
                    --config_path models/gpt2/distil_config.json \
                    --output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
                    --learning_rate 5e-5 --batch_size 16

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \
                                                        --output_model_path pytorch_model.bin \
                                                        --layers_num 6

For GPT2-xlarge model, we use TencetPretrain.

Stage1:

python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor lm
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
                      --dataset_path corpora/cluecorpussmall_lm_seq128_dataset.pt \
                      --vocab_path models/google_zh_vocab.txt \
                      --config_path models/gpt2/xlarge_config.json \
                      --output_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model \
                      --world_size 8 --batch_size 64 \
                      --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                      --deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 24

Before stage2, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:

python3 models/cluecorpussmall_gpt2_xlarge_seq128_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq128_model/ \
                                                                        models/cluecorpussmall_gpt2_xlarge_seq128_model.bin

Stage2:

python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                      --seq_length 1024 --processes_num 32 --data_processor lm
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
                      --dataset_path corpora/cluecorpussmall_lm_seq1024_dataset.pt \
                      --vocab_path models/google_zh_vocab.txt \
                      --config_path models/gpt2/xlarge_config.json \
                      --pretrained_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model.bin \
                      --output_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model \
                      --world_size 8 --batch_size 16 --learning_rate 5e-5 \
                      --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
                      --deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 6

Then, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:

python3 models/cluecorpussmall_gpt2_xlarge_seq1024_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq1024_model/ \
                                                                         models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_gpt2_from_tencentpretrain_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin \
                                                                    --output_model_path pytorch_model.bin \
                                                                    --layers_num 48

BibTeX entry and citation info

@article{radford2019language,
  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
Downloads last month
663
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.