weed_vit_balanced / README.md
uisikdag's picture
Update README.md
187502a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: weeds_hfclass11
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9566666666666667

weeds_hfclass11

Model is trained on balanced dataset/ 250 image per class/ .8 .1 .1 split/ 224x224 resized

Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3603
  • Accuracy: 0.9567

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3089 0.99 37 2.0422 0.7133
1.4465 1.99 74 1.2227 0.8767
0.8455 2.99 111 0.8121 0.9067
0.6579 3.99 148 0.6161 0.9267
0.5163 4.99 185 0.5031 0.94
0.4374 5.99 222 0.4078 0.9633
0.3912 6.99 259 0.4134 0.9467
0.358 7.99 296 0.4207 0.9233
0.3509 8.99 333 0.3768 0.95
0.3288 9.99 370 0.3603 0.9567

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2