Model description

This model is a fine-tuned version of Open Llama 7B V2, trained to generate explanations for Cardano smart contracts.

Base Model: Open Llama 7B V2
Fine-Tuning Framework: Axolotl
Hardware Used: NVIDIA L40 GPU
Objective: Simplify and explain Cardano smart contracts.

For more information on the model, see UnboundedMarket AI Explainer Models, and our interface for visualizing and browsing the smart contracts UnboundedMarket AI Explainer Interface

Intended uses & limitations

The model is designed to help users and developers to better understand Cardano smart contracts.

Training and evaluation data

The model was trained on a dataset of Cardano smart contracts, see train_data.jsonl.

Training procedure

The model was instructed tuned, using Lora via Axolotl. Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: openlm-research/open_llama_7b_v2
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: true
load_in_4bit: false
strict: false
push_dataset_to_hub:
datasets:
  - path: train_dataset.jsonl
    type: alpaca
dataset_prepared_path:
val_set_size: 0.1
adapter: lora
lora_model_dir:
sequence_len: 1024
sample_packing: false
lora_r: 8
lora_alpha: 16
lora_dropout: 0.0
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./outputs/open_llama_7b_v2_explain_contracts
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
s2_attention:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0718 0.0049 1 0.9605
0.7756 0.2512 51 0.6831
0.7316 0.5025 102 0.6300
0.5161 0.7537 153 0.5952
0.2465 1.0049 204 0.5775
0.3408 1.2562 255 0.5715
0.5834 1.5074 306 0.5610
0.4347 1.7586 357 0.5540
0.272 2.0099 408 0.5428
0.2509 2.2611 459 0.5885
0.2044 2.5123 510 0.5848
0.4006 2.7635 561 0.5771
0.2471 3.0148 612 0.5739
0.0865 3.2660 663 0.6318
0.1475 3.5172 714 0.6396
0.3631 3.7685 765 0.6394

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for unboundedmarket/smart_contract_explainer_open_llama_7b_v2

Adapter
(2)
this model