|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv2-large-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv2-finetuned-cord |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv2-finetuned-cord |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4287 |
|
- Precision: 0.5421 |
|
- Recall: 0.4754 |
|
- F1: 0.5066 |
|
- Accuracy: 0.9272 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 135 | 0.3706 | 0.4855 | 0.4816 | 0.4835 | 0.9190 | |
|
| No log | 2.0 | 270 | 0.3198 | 0.5887 | 0.5102 | 0.5467 | 0.9308 | |
|
| No log | 3.0 | 405 | 0.3602 | 0.5237 | 0.4529 | 0.4857 | 0.9238 | |
|
| 0.323 | 4.0 | 540 | 0.3866 | 0.5251 | 0.4508 | 0.4851 | 0.9250 | |
|
| 0.323 | 5.0 | 675 | 0.4287 | 0.5421 | 0.4754 | 0.5066 | 0.9272 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|