|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0882 |
|
- Rouge1: 17.4498 |
|
- Rouge2: 8.7404 |
|
- Rougel: 16.8415 |
|
- Rougelsum: 16.9066 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 6.4445 | 1.0 | 1209 | 3.3476 | 13.3795 | 5.5143 | 12.8433 | 12.7807 | |
|
| 3.9098 | 2.0 | 2418 | 3.2364 | 15.5805 | 7.6998 | 14.9371 | 14.9673 | |
|
| 3.5854 | 3.0 | 3627 | 3.1560 | 17.0237 | 8.2938 | 16.3307 | 16.3798 | |
|
| 3.4231 | 4.0 | 4836 | 3.1527 | 18.0902 | 9.0059 | 17.1599 | 17.2816 | |
|
| 3.3166 | 5.0 | 6045 | 3.1183 | 17.5474 | 8.6267 | 16.9442 | 17.0014 | |
|
| 3.2545 | 6.0 | 7254 | 3.0967 | 17.6619 | 8.625 | 17.0709 | 17.0763 | |
|
| 3.2021 | 7.0 | 8463 | 3.0897 | 18.1442 | 9.1184 | 17.6043 | 17.5848 | |
|
| 3.1818 | 8.0 | 9672 | 3.0882 | 17.4498 | 8.7404 | 16.8415 | 16.9066 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|