Đà mã 2 (Llama2 architecture)
Dama2 is an autoregressive Large Language Model (LLM), based on Llama2's model architecture. Dama2 was trained on part of the Common Crawl dataset in Vietnamese and English.
Details will be available soon.
To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu)
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("vietgpt/dama-2-7b")
model = AutoModelForCausalLM.from_pretrained("vietgpt/dama-2-7b", low_cpu_mem_usage=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)
gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)
print(tokenizer.batch_decode(gen_tokens)[0])
{
"results": {
"lambada_vi": {
"ppl": 17.662483545322115,
"ppl_stderr": 0.46441057543941494,
"acc": 0.34159672067148156,
"acc_stderr": 0.004685401990271572
}
},
"versions": {
"lambada_vi": null
},
"config": {
"model": "hf-causal",
"model_args": "pretrained=vietgpt/dama-2-7b",
"num_fewshot": 0,
"batch_size": null,
"batch_sizes": [],
"device": "cuda:1",
"no_cache": false,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
hf-causal (pretrained=vietgpt/dama-2-7b), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
| Task |Version|Metric| Value | |Stderr|
|----------|-------|------|------:|---|-----:|
|lambada_vi| |ppl |17.6625|± |0.4644|
| | |acc | 0.3416|± |0.0047|
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train vietgpt/dama-2-7b
Spaces using vietgpt/dama-2-7b 2
Evaluation results
- Perplexity on ViLambadatest set self-reported6.951
- SacreBLEU on English to Vietnamese Formal/Informal translationtest set self-reported26.300