Edit model card

t5-small-finetuned-laws_articles

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4459
  • Rouge1: 28.5123
  • Rouge2: 10.7847
  • Rougel: 23.1779
  • Rougelsum: 23.1054
  • Gen Len: 18.7143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 87 3.0316 27.6181 11.4154 23.0601 23.0895 18.6494
No log 2.0 174 2.8530 28.2521 11.5239 23.2405 23.2335 18.5325
No log 3.0 261 2.7724 28.1619 10.4465 22.4885 22.5004 18.4545
No log 4.0 348 2.7206 27.6965 10.4247 22.5084 22.504 18.5714
No log 5.0 435 2.6820 28.0781 10.4734 23.0002 22.9096 18.5455
3.0366 6.0 522 2.6535 28.2097 10.5925 23.4952 23.474 18.4675
3.0366 7.0 609 2.6330 27.9031 10.4349 23.1427 23.1499 18.5325
3.0366 8.0 696 2.6191 27.7764 10.1563 22.7929 22.6971 18.4286
3.0366 9.0 783 2.5998 27.2375 9.7613 22.2731 22.2206 18.2727
3.0366 10.0 870 2.5866 27.2295 9.6843 22.5222 22.3697 18.3377
3.0366 11.0 957 2.5723 26.7174 9.3882 22.2336 22.0906 18.3377
2.7071 12.0 1044 2.5651 27.4541 10.5671 22.7291 22.6063 18.2468
2.7071 13.0 1131 2.5539 27.1483 9.9641 22.252 22.0612 18.2857
2.7071 14.0 1218 2.5451 27.4547 10.3266 22.6335 22.4141 18.3247
2.7071 15.0 1305 2.5366 27.3057 10.0068 22.5939 22.4321 18.3377
2.7071 16.0 1392 2.5291 27.0093 9.8964 22.1854 22.0594 18.4416
2.7071 17.0 1479 2.5210 27.4076 9.8442 22.4911 22.3641 18.3117
2.5937 18.0 1566 2.5130 27.8067 10.1345 22.5757 22.4506 18.3896
2.5937 19.0 1653 2.5086 28.5205 10.8396 22.902 22.7628 18.4416
2.5937 20.0 1740 2.5043 28.1191 10.3793 22.6607 22.5025 18.5584
2.5937 21.0 1827 2.4971 28.0615 10.3535 22.7174 22.5795 18.6104
2.5937 22.0 1914 2.4935 28.0575 10.2809 22.9132 22.7487 18.5974
2.5208 23.0 2001 2.4886 27.8841 10.3683 22.66 22.5543 18.7532
2.5208 24.0 2088 2.4851 27.5211 9.9966 22.5687 22.4658 18.6753
2.5208 25.0 2175 2.4823 27.7727 10.2515 22.7401 22.5633 18.5974
2.5208 26.0 2262 2.4785 28.042 10.4358 22.9115 22.7964 18.7273
2.5208 27.0 2349 2.4731 27.6472 10.2882 22.6181 22.4979 18.6364
2.5208 28.0 2436 2.4714 27.8088 10.4361 22.885 22.7203 18.6623
2.4649 29.0 2523 2.4694 27.73 10.5222 22.7567 22.6331 18.7013
2.4649 30.0 2610 2.4660 27.6279 10.377 22.4668 22.4061 18.7013
2.4649 31.0 2697 2.4649 27.3504 10.1574 22.224 22.1656 18.7013
2.4649 32.0 2784 2.4639 27.3448 9.9756 22.1962 22.1349 18.7013
2.4649 33.0 2871 2.4609 27.3083 10.0656 22.2803 22.2228 18.7143
2.4649 34.0 2958 2.4593 27.51 10.0941 22.3699 22.3382 18.6623
2.4181 35.0 3045 2.4562 27.5434 10.1665 22.5002 22.4415 18.7143
2.4181 36.0 3132 2.4545 27.5664 10.0953 22.5101 22.4741 18.6364
2.4181 37.0 3219 2.4530 27.5874 10.333 22.5099 22.4576 18.7013
2.4181 38.0 3306 2.4522 27.3705 10.1022 22.4695 22.3849 18.6623
2.4181 39.0 3393 2.4512 27.8864 10.2695 22.834 22.759 18.6753
2.4181 40.0 3480 2.4504 27.6797 10.2472 22.5788 22.5353 18.7013
2.4038 41.0 3567 2.4495 27.6797 10.2472 22.5788 22.5353 18.7013
2.4038 42.0 3654 2.4492 27.1595 9.6186 22.1003 22.0487 18.6883
2.4038 43.0 3741 2.4490 27.8341 10.2826 22.8117 22.7244 18.7013
2.4038 44.0 3828 2.4479 28.0005 10.4067 22.8833 22.8177 18.7013
2.4038 45.0 3915 2.4475 28.0811 10.4117 22.8975 22.8276 18.7013
2.3785 46.0 4002 2.4471 28.0811 10.4117 22.8975 22.8276 18.7013
2.3785 47.0 4089 2.4466 28.4435 10.793 23.0757 23.0082 18.7013
2.3785 48.0 4176 2.4463 28.5123 10.7847 23.1779 23.1054 18.7143
2.3785 49.0 4263 2.4460 28.2551 10.653 22.9815 22.8896 18.7143
2.3785 50.0 4350 2.4459 28.5123 10.7847 23.1779 23.1054 18.7143

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for viktor-shevchuk/t5-small-finetuned-laws_articles

Base model

google-t5/t5-small
Finetuned
(1531)
this model