Edit model card

Model Card of vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg

This model is fine-tuned version of ckpts/mbart-large-cc25-trimmed-fr for question generation task on the lmqg/qg_frquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="fr", model="vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg")

# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mbart-large-cc25-trimmed-fr-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")

Evaluation

Score Type Dataset
BERTScore 79.68 default lmqg/qg_frquad
Bleu_1 27.09 default lmqg/qg_frquad
Bleu_2 16.2 default lmqg/qg_frquad
Bleu_3 11.02 default lmqg/qg_frquad
Bleu_4 7.76 default lmqg/qg_frquad
METEOR 18.37 default lmqg/qg_frquad
MoverScore 56.32 default lmqg/qg_frquad
ROUGE_L 28.41 default lmqg/qg_frquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_frquad
  • dataset_name: default
  • input_types: paragraph_answer
  • output_types: question
  • prefix_types: None
  • model: ckpts/mbart-large-cc25-trimmed-fr
  • max_length: 512
  • max_length_output: 32
  • epoch: 10
  • batch: 8
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 8
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results