vumichien's picture
update model card README.md
14c6955
|
raw
history blame
2.75 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - superb
metrics:
  - accuracy
model-index:
  - name: trillsson3-ft-keyword-spotting-13
    results: []

trillsson3-ft-keyword-spotting-13

This model is a fine-tuned version of vumichien/nonsemantic-speech-trillsson3 on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3115
  • Accuracy: 0.9100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7756 1.0 798 0.9283 0.6396
0.8631 2.0 1596 0.4884 0.8573
0.7551 3.0 2394 0.3967 0.8832
0.6968 4.0 3192 0.3644 0.8989
0.67 5.0 3990 0.3428 0.9057
0.6854 6.0 4788 0.3408 0.9026
0.6701 7.0 5586 0.3359 0.9013
0.6734 8.0 6384 0.3285 0.9059
0.6581 9.0 7182 0.3199 0.9095
0.6557 10.0 7980 0.3301 0.8986
0.6768 11.0 8778 0.3174 0.9047
0.6459 12.0 9576 0.3192 0.9031
0.6607 13.0 10374 0.3173 0.9066
0.656 14.0 11172 0.3142 0.9094
0.6302 15.0 11970 0.3093 0.9153
0.636 16.0 12768 0.3184 0.9044
0.6327 17.0 13566 0.3104 0.9117
0.6428 18.0 14364 0.3158 0.9084
0.6515 19.0 15162 0.3129 0.9097
0.6441 20.0 15960 0.3115 0.9100

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1