|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-1e-4-20ep |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: vuongnhathien/30VNFoods |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8873015873015873 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-1e-4-20ep |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the vuongnhathien/30VNFoods dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4034 |
|
- Accuracy: 0.8873 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.5376 | 1.0 | 275 | 0.4677 | 0.8640 | |
|
| 0.2085 | 2.0 | 550 | 0.4375 | 0.8811 | |
|
| 0.0755 | 3.0 | 825 | 0.4605 | 0.8899 | |
|
| 0.0429 | 4.0 | 1100 | 0.4784 | 0.8879 | |
|
| 0.0146 | 5.0 | 1375 | 0.5386 | 0.8799 | |
|
| 0.0176 | 6.0 | 1650 | 0.5524 | 0.8803 | |
|
| 0.0137 | 7.0 | 1925 | 0.5249 | 0.8887 | |
|
| 0.0076 | 8.0 | 2200 | 0.5401 | 0.8942 | |
|
| 0.0026 | 9.0 | 2475 | 0.5477 | 0.8934 | |
|
| 0.0054 | 10.0 | 2750 | 0.5417 | 0.8946 | |
|
| 0.0034 | 11.0 | 3025 | 0.5430 | 0.8974 | |
|
| 0.0033 | 12.0 | 3300 | 0.5443 | 0.8954 | |
|
| 0.0027 | 13.0 | 3575 | 0.5423 | 0.8986 | |
|
| 0.0024 | 14.0 | 3850 | 0.5434 | 0.8990 | |
|
| 0.0027 | 15.0 | 4125 | 0.5483 | 0.8962 | |
|
| 0.0027 | 16.0 | 4400 | 0.5485 | 0.8998 | |
|
| 0.0019 | 17.0 | 4675 | 0.5502 | 0.8998 | |
|
| 0.0022 | 18.0 | 4950 | 0.5508 | 0.8998 | |
|
| 0.0015 | 19.0 | 5225 | 0.5509 | 0.9002 | |
|
| 0.002 | 20.0 | 5500 | 0.5510 | 0.9010 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|