Text Generation
Safetensors
Chinese
English

Aurora: Activating chinese chat capability for Mistral-8x7B sparse Mixture-of-Experts through Instruction-Tuning

  1. Please follow our Github: https://github.com/WangRongsheng/Aurora

  2. Please follow our Paper: https://arxiv.org/abs/2312.14557

Overview

Existing research has demonstrated that refining large language models (LLMs) through the utilization of machine-generated instruction-following data empowers these models to exhibit impressive zero-shot capabilities for novel tasks, without requiring human-authored instructions. In this paper, we systematically investigate, preprocess, and integrate three Chinese instruction-following datasets with the aim of enhancing the Chinese conversational capabilities of Mixtral-8x7B sparse Mixture-of-Experts model. Through instruction fine-tuning on this carefully processed dataset, we successfully construct the Mixtral-8x7B sparse Mixture-of-Experts model named "Aurora." To assess the performance of Aurora, we utilize three widely recognized benchmark tests: C-Eval, MMLU, and CMMLU. Empirical studies validate the effectiveness of instruction fine-tuning applied to Mixtral-8x7B sparse Mixture-of-Experts model. This work is pioneering in the execution of instruction fine-tuning on a sparse expert-mixed model, marking a significant breakthrough in enhancing the capabilities of this model architecture.

Usage

import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
from peft import PeftModel
import time

model_name_or_path = "mistralai/Mixtral-8x7B-Instruct-v0.1" # download weights from https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
lora_weights = "wangrongsheng/Aurora" # download weights from https://huggingface.co/wangrongsheng/Aurora

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model0 = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=True, device_map="auto", torch_dtype=torch.bfloat16)
model = PeftModel.from_pretrained(
    model0,
    lora_weights,
)

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [0,]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

def convert_history_to_text(history):
    text = ""
    if len(history) > 1:
        text = "<s> " + "".join(
                [
                    "".join(
                        [
                            f"[INST]{item[0]}[/INST] {item[1]} ",
                        ]
                    )
                    for item in history[:-1]
                ]
            ) + "</s> "
    text += "".join(
        [
            "".join(
                [
                    f"[INST]{history[-1][0]}[/INST]",
                ]
            )
        ]
    )
    return text

def predict(message, history):

    history_transformer_format = history + [[message, ""]]
    stop = StopOnTokens()

    messages = convert_history_to_text(history_transformer_format)

    model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=4096,
        do_sample=True,
        top_p=0.95,
        top_k=1000,
        temperature=1.0,
        num_beams=1,
        pad_token_id=tokenizer.eos_token_id,
        stopping_criteria=StoppingCriteriaList([stop])
        )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_message  = ""
    t1 = time.time()
    count = 0
    for new_token in streamer:
        if new_token != '<':
            partial_message += new_token
            count += 1
            yield partial_message
    t2 = time.time()
    speed = count/(t2-t1)
    print("inference speed: %f tok/s" % speed)


gr.ChatInterface(predict,chatbot=gr.Chatbot(height=600,),title="MoE").queue().launch()

Citation

If you find our work helpful, feel free to give us a cite.

@misc{wang2023auroraactivating,
      title={Aurora:Activating Chinese chat capability for Mixtral-8x7B sparse Mixture-of-Experts through Instruction-Tuning}, 
      author={Rongsheng Wang and Haoming Chen and Ruizhe Zhou and Yaofei Duan and Kunyan Cai and Han Ma and Jiaxi Cui and Jian Li and Patrick Cheong-Iao Pang and Yapeng Wang and Tao Tan},
      year={2023},
      eprint={2312.14557},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train wangrongsheng/Aurora-Plus

Collection including wangrongsheng/Aurora-Plus