BenchmarkEngineering-7B-slerp
This model was merged with the intent of producing excellent Open-LLM benchmarking results by smashing two of the highest performant models in their class together
BenchmarkEngineering-7B-slerp is a merge of the following models using LazyMergekit:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.40 |
AI2 Reasoning Challenge (25-Shot) | 74.15 |
HellaSwag (10-Shot) | 89.09 |
MMLU (5-Shot) | 64.69 |
TruthfulQA (0-shot) | 75.93 |
Winogrande (5-shot) | 85.32 |
GSM8k (5-shot) | 69.22 |
🧩 Configuration
slices:
- sources:
- model: paulml/OmniBeagleSquaredMBX-v3-7B
layer_range: [0, 32]
- model: automerger/YamshadowExperiment28-7B
layer_range: [0, 32]
merge_method: slerp
base_model: paulml/OmniBeagleSquaredMBX-v3-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "weezywitasneezy/BenchmarkEngineering-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for weezywitasneezy/BenchmarkEngineering-7B-slerp
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard74.150
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard89.090
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.690
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard75.930
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard85.320
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard69.220