train3dataset / README.md
wwwtwwwt's picture
End of training
f21c222 verified
|
raw
history blame
2.18 kB
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - wwwtwwwt/fineaudio-ArtCreativity
metrics:
  - wer
model-index:
  - name: Whisper Tiny En - ArtCreativity - Photography Tips
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fineaudio-ArtCreativity-Photography Tips
          type: wwwtwwwt/fineaudio-ArtCreativity
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 34.15042216256177

Whisper Tiny En - ArtCreativity - Photography Tips

This model is a fine-tuned version of openai/whisper-tiny on the fineaudio-ArtCreativity-Photography Tips dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7095
  • Wer: 34.1504

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7104 0.7199 1000 0.7320 36.1841
0.4721 1.4399 2000 0.7127 35.3579
0.3614 2.1598 3000 0.7118 34.7159
0.3472 2.8798 4000 0.7095 34.1504

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0