Llama
Collection
All our SOTA Llama models that crush competition :)
•
6 items
•
Updated
•
1
This repository contains meta-llama/Llama-3.2-1B-Instruct
quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
Loading the model checkpoint of this xMADified model requires less than 2 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs.
Package prerequisites: Run the following commands to install the required packages.
pip install -q --upgrade transformers accelerate optimum
pip install -q --no-build-isolation auto-gptq
Sample Inference Code
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "xmadai/Llama-3.2-1B-Instruct-xMADai-4bit"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
device_map='auto',
trust_remote_code=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
For additional xMADified models, access to fine-tuning, and general questions, please contact us at support@xmad.ai and join our waiting list.
Base model
meta-llama/Llama-3.2-1B-Instruct