metadata
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: skilltext
results: []
skilltext
This model is a fine-tuned version of google/mt5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.431
- Rouge2: 0.0
- Rougel: 0.431
- Rougelsum: 0.431
- Bleu: 0.0322
- Gen Len: 11.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len |
---|---|---|---|---|---|---|---|---|---|
No log | 0.8065 | 50 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 1.6129 | 100 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 2.4194 | 150 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 3.2258 | 200 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 4.0323 | 250 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 4.8387 | 300 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 5.6452 | 350 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 6.4516 | 400 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
No log | 7.2581 | 450 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 8.0645 | 500 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 8.8710 | 550 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 9.6774 | 600 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 10.4839 | 650 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 11.2903 | 700 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 12.0968 | 750 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 12.9032 | 800 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 13.7097 | 850 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 14.5161 | 900 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 15.3226 | 950 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 16.1290 | 1000 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 16.9355 | 1050 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 17.7419 | 1100 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 18.5484 | 1150 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 19.3548 | 1200 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 20.1613 | 1250 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 20.9677 | 1300 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 21.7742 | 1350 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 22.5806 | 1400 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 23.3871 | 1450 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 24.1935 | 1500 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 25.0 | 1550 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 25.8065 | 1600 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 26.6129 | 1650 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 27.4194 | 1700 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 28.2258 | 1750 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 29.0323 | 1800 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
0.0 | 29.8387 | 1850 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.12.0
- Tokenizers 0.19.1