|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: skilltext |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# skilltext |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Rouge1: 0.431 |
|
- Rouge2: 0.0 |
|
- Rougel: 0.431 |
|
- Rougelsum: 0.431 |
|
- Bleu: 0.0322 |
|
- Gen Len: 11.75 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:-------:| |
|
| No log | 0.8065 | 50 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 1.6129 | 100 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 2.4194 | 150 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 3.2258 | 200 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 4.0323 | 250 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 4.8387 | 300 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 5.6452 | 350 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 6.4516 | 400 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| No log | 7.2581 | 450 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 8.0645 | 500 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 8.8710 | 550 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 9.6774 | 600 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 10.4839 | 650 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 11.2903 | 700 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 12.0968 | 750 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 12.9032 | 800 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 13.7097 | 850 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 14.5161 | 900 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 15.3226 | 950 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 16.1290 | 1000 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 16.9355 | 1050 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 17.7419 | 1100 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 18.5484 | 1150 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 19.3548 | 1200 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 20.1613 | 1250 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 20.9677 | 1300 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 21.7742 | 1350 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 22.5806 | 1400 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 23.3871 | 1450 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 24.1935 | 1500 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 25.0 | 1550 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 25.8065 | 1600 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 26.6129 | 1650 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 27.4194 | 1700 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 28.2258 | 1750 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 29.0323 | 1800 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
| 0.0 | 29.8387 | 1850 | nan | 0.431 | 0.0 | 0.431 | 0.431 | 0.0322 | 11.75 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.2 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.19.1 |
|
|