xshubhamx's picture
tokenizer
d84b3ee verified
|
raw
history blame
4.73 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
base_model: nlpaueb/legal-bert-base-uncased
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: legal-bert-base-uncased
    results: []

legal-bert-base-uncased

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2259
  • Accuracy: 0.2455
  • Precision: 0.0603
  • Recall: 0.2455
  • Precision Macro: 0.0164
  • Recall Macro: 0.0667
  • Macro Fpr: 0.0667
  • Weighted Fpr: 0.1800
  • Weighted Specificity: 0.7545
  • Macro Specificity: 0.9333
  • Weighted Sensitivity: 0.2455
  • Macro Sensitivity: 0.0667
  • F1 Micro: 0.2455
  • F1 Macro: 0.0263
  • F1 Weighted: 0.0968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
2.2376 1.0 643 2.2455 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2504 2.0 1286 2.2412 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2292 3.0 1929 2.2300 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.218 4.0 2572 2.2316 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2317 5.0 3215 2.2295 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2355 6.0 3858 2.2310 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2231 7.0 4501 2.2300 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2212 8.0 5144 2.2291 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2318 9.0 5787 2.2258 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968
2.2128 10.0 6430 2.2259 0.2455 0.0603 0.2455 0.0164 0.0667 0.0667 0.1800 0.7545 0.9333 0.2455 0.0667 0.2455 0.0263 0.0968

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2