tiny-mistral / README.md
xshubhamx's picture
Update README.md
3d6561d verified
|
raw
history blame
6.55 kB
metadata
tags:
  - generated_from_trainer
base_model: openaccess-ai-collective/tiny-mistral
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: tiny-mistral
    results: []

Metrics Upon Eval with max_length = 512

  • loss: 2.4489
  • accuracy: 0.7250
  • precision: 0.7150
  • recall: 0.7250
  • precision_macro: 0.6583
  • recall_macro: 0.6262
  • macro_fpr: 0.0278
  • weighted_fpr: 0.0264
  • weighted_specificity: 0.9597
  • macro_specificity: 0.9790
  • weighted_sensitivity: 0.7250
  • macro_sensitivity: 0.6262
  • f1_micro: 0.7250
  • f1_macro: 0.6317
  • f1_weighted: 0.7155
  • runtime: 27.7396
  • samples_per_second: 46.5400
  • steps_per_second: 5.8400

tiny-mistral

This model is a fine-tuned version of openaccess-ai-collective/tiny-mistral on an unknown dataset. It achieves the following results on the evaluation set (at last epoch):

  • Loss: 2.5607
  • Accuracy: 0.7126
  • Precision: 0.7033
  • Recall: 0.7126
  • Precision Macro: 0.6443
  • Recall Macro: 0.5942
  • Macro Fpr: 0.0292
  • Weighted Fpr: 0.0282
  • Weighted Specificity: 0.9577
  • Macro Specificity: 0.9779
  • Weighted Sensitivity: 0.7111
  • Macro Sensitivity: 0.5942
  • F1 Micro: 0.7111
  • F1 Macro: 0.6107
  • F1 Weighted: 0.7086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
1.4479 1.0 643 1.1182 0.6499 0.6258 0.6499 0.4712 0.4744 0.0390 0.0371 0.9470 0.9731 0.6499 0.4744 0.6499 0.4547 0.6214
0.8133 2.0 1286 1.0854 0.6987 0.7197 0.6987 0.5877 0.5528 0.0305 0.0299 0.9608 0.9773 0.6987 0.5528 0.6987 0.5474 0.6970
0.5592 3.0 1929 1.6114 0.6987 0.7107 0.6987 0.6368 0.5881 0.0304 0.0299 0.9609 0.9773 0.6987 0.5881 0.6987 0.6013 0.6998
0.2375 4.0 2572 1.7779 0.6956 0.7001 0.6956 0.5840 0.5667 0.0310 0.0303 0.9566 0.9768 0.6956 0.5667 0.6956 0.5699 0.6923
0.1586 5.0 3215 2.1752 0.6948 0.7011 0.6948 0.5797 0.5799 0.0316 0.0304 0.9601 0.9770 0.6948 0.5799 0.6948 0.5695 0.6917
0.0956 6.0 3858 2.3261 0.7080 0.7213 0.7080 0.6169 0.6191 0.0291 0.0286 0.9646 0.9782 0.7080 0.6191 0.7080 0.6115 0.7105
0.044 7.0 4501 2.3308 0.7157 0.7143 0.7157 0.6184 0.5939 0.0285 0.0276 0.9611 0.9785 0.7157 0.5939 0.7157 0.6014 0.7131
0.0212 8.0 5144 2.5607 0.7126 0.7033 0.7126 0.6494 0.6175 0.0294 0.0280 0.9581 0.9780 0.7126 0.6175 0.7126 0.6237 0.7047
0.0183 9.0 5787 2.6405 0.7119 0.7092 0.7119 0.6133 0.5850 0.0291 0.0281 0.9599 0.9781 0.7119 0.5850 0.7119 0.5935 0.7088
0.0145 10.0 6430 2.7268 0.7088 0.7058 0.7088 0.6235 0.5945 0.0297 0.0285 0.9574 0.9777 0.7088 0.5945 0.7088 0.6039 0.7051
0.0065 11.0 7073 2.7568 0.7149 0.7133 0.7149 0.6342 0.5966 0.0286 0.0277 0.9609 0.9784 0.7149 0.5966 0.7149 0.6068 0.7123
0.0012 12.0 7716 2.9243 0.7088 0.7106 0.7088 0.6261 0.5886 0.0296 0.0285 0.9581 0.9778 0.7088 0.5886 0.7088 0.6011 0.7071
0.0019 13.0 8359 2.9101 0.7119 0.7107 0.7119 0.6399 0.5910 0.0291 0.0281 0.9576 0.9780 0.7119 0.5910 0.7119 0.6073 0.7085
0.0011 14.0 9002 2.9270 0.7103 0.7101 0.7103 0.6430 0.5925 0.0293 0.0283 0.9576 0.9779 0.7103 0.5925 0.7103 0.6090 0.7077
0.0008 15.0 9645 2.9390 0.7111 0.7110 0.7111 0.6443 0.5942 0.0292 0.0282 0.9577 0.9779 0.7111 0.5942 0.7111 0.6107 0.7086

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2