qm9-tokenizer / tokenizer.py
yairschiff's picture
Upload tokenizer
7e50af1 verified
"""Custom Tokenization classes."""
import collections
import json
import os
import re
from typing import List, Optional, Tuple, Union
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"yairschiff/qm9-tokenizer": "https://huggingface.co/yairschiff/qm9-tokenizer/resolve/main/vocab.json",
}
}
class QM9Tokenizer(PreTrainedTokenizer):
r"""
Construct a tokenizer for QM9 dataset. Based on regex.
This tokenizer inherits from [`PreTrainedTokenizer`]
which contains most of the main methods. Users should
refer to this superclass for more information regarding
those methods.
Adapted from:
https://huggingface.co/ibm/MoLFormer-XL-both-10pct
Args:
vocab_file (`str`):
File containing the vocabulary.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token not in the vocabulary
cannot be converted to an ID and is set to be
this token instead.
sep_token (`str`, *optional*, defaults to `"<eos>"`):
The separator token, which is used when building
a sequence from multiple sequences, e.g., two
sequences for sequence classification or for a
text and a question for question answering.
It is also used as the last token of a sequence
built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example, when
batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<bos>"`):
The classifier token which is used when doing
sequence classification (classification of the
whole sequence
instead of per-token classification). It is the
first token of the sequence when built with
special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the
token used when training this model with masked
language modeling. This is the token, which the
model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token='<unk>',
sep_token='<eos>',
pad_token='<pad>',
cls_token='<bos>',
mask_token='<mask>',
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path"
f"'{vocab_file}'."
)
with open(vocab_file, encoding="utf-8") as vocab_handle:
vocab_from_file = json.load(vocab_handle)
# Re-index to account for special tokens
self.vocab = {
cls_token: 0,
sep_token: 1,
mask_token: 2,
pad_token: 3,
unk_token: 4,
**{k: v + 5 for k, v in vocab_from_file.items()}
}
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
# Regex pattern taken from:
# https://github.com/pschwllr/MolecularTransformer
self.pattern = (
r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
)
self.regex_tokenizer = re.compile(self.pattern)
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, **kwargs):
split_tokens = self.regex_tokenizer.findall(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts sequence of tokens (string) in a single string."""
out_string = "".join(tokens).strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of
sequences for sequence classification tasks by
concatenating and adding special tokens.
A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will
be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence
pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids)
with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no
special tokens added. This method is called when
adding special tokens using the tokenizer
`prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether the token list is already formatted
with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range
[0, 1]: 1 for a special token, 0 for a sequence
token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be
used in a sequence-pair classification task.
A BERT sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns
the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence
pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(
self, save_directory: str,
filename_prefix: Optional[str] = None
) -> Union[Tuple[str], None]:
if not os.path.isdir(save_directory):
logger.error(
f"Vocabulary path ({save_directory}) should"
"be a directory.")
return None
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(
json.dumps(
self.vocab,
indent=2,
sort_keys=True,
ensure_ascii=False
) + "\n")
return (vocab_file,)